Software Engineering

The Department of Computer Science, University of Cape Town

Software Engineering
by The Department of Computer Science, University of Cape Town

Publication date 2010
Copyright © 2005-2010 University of Cape Town

Table of Contents

IO | oo [0 (o o I ORI 1
L@ o= 1 Y= N 1
g1 [0 ot [o PP 1
Information Systems and SOftWArEuvviunieiiii i e e 1

The importance of software engineeringcoovvviviiiiiii i 2
Y 01 2
VS (= 0 10 0 = = 3
Categories of information system and software programscccceveveiieeeiieeiiiierinnennnn. 4
INfOrMELION SYSIEIMS ..uiiiicii e e e e e e e e e e e e e e e aaaees 4
[0 0y Y [o 6
The benefits of SOftware SYStEMScvviii e 7
Tactical DENEFITS .ooove e 7
Strategic DENEFITSiiie e 7
The reasons for ChaNQEcovuiiiii e e e 8
SOftWAre MYTNS ...eeeie e 8
Management MYLNScouii e 8
Customer / end-USEr MYLNSiiii e e 8
Programmer MYtNS ... 9
REVIBIV e 9
QUESLIONS ..eviitiei ettt et et e ettt 9
AANSIVEIS ettt et et ettt e e e enes 12

2. Process and MOEcooouiiiiiii e 16
L@ o= 1AY== R 16
THE SOfIWEIE CriSIS evviieiiii e e e et e et e eeeat e eeees 16

The code-and-fix approach to software developmentc..coeviiiiiiiiiivineeennn, 16
Software engineering and the Software ProCesSovvvvviiiiiiiiiiiiie e 17
The layers of software engineeringvovvviiiii i e 18
A generic framework of the software proCesSocvuveiiiieiiiiiiiii e 19
SOftWEIE MOEIS ... e 20
Prescriptive and agile ModelSccovuiiiiiiiii 20
Computer Aided Software Engineering: CASE ..o, 31
REVIBIV .. 35
(@ 01 1o PP 35
AANSIVEIS ettt et et e e enas 36

3. ReqQUIrEMENtS ENQINEEIING ..ovvuieiiieiii et e e e e e e e e et e e e e e e e et e e et eeaaeaannaees 38
L@ o= 1AY== R 38
REqQUIEMENES ENGINEENING .uueitiei e e e e e e e e e e et e e e e ean s 38
What is requirements ENgINEEIING?oveunieii e e e e e e e e e e e eaaaeees 38
The StEPS IN AEtall ...oveiei e 39

o= o)1 o] 1 P 39
| Lo} = o) o TSP 40
[F=lo] = 1 o] o PSP 40
[IN="o o) 1= 1o o 40
SPECITICAIION ..eveeie e e e 40
V2= e = 1 o o [PSP 40
MaANAGEMENT ...t 41
L0 LS SN oS S 1o o L= 1T oo P 41
Use case modeling in the UML specificationcooeeiiiiiiivinccin e, 41
REVIBIV .. 55
(@01 1o PP 55
AANSIVEIS ettt et et e e enas 56

4. An Introduction to AnalySiS @and DESIGNcvvuiiiiieiie e e e 58
L@ o= 1AY== 58
F g1 100 (8ot [o U SPPPTPPPIN 58

SYSEEM BNAIYSIS ..oeviiiiiicii e 58

Software Engineering

SYSEEM AESION ettt ettt et 58

The relation between analysis and designc..uvviiiiiiiiiiii e 58
INtrodUCEION T0 MOGEIScvve e 59
Definition of the term “model”oi i 59

The properties of MOEIS i e 60
Model properties: maintainability and disposabilityc.cccoooiiiiiiiiiiiiiiinn. 60
Model properties: graphics and teXtuviiiiiiiiiiii e 61
Model properties: COMPreNENSIONcoveuuieiiiii e 61

The main models of traditional analysis and designocoeeviiiiiiiiineiiii e, 61
Class MOEL ... e 62
Data-floOW diagramooeeniii e 62
SEQUENCE QIAGIEIMS ...ttt ettt e e e e eaaaas 63
USEFUL POINES ..ttt e et e e 64

The benefits of using formal MOdElSooiiiiiiiiii e 64
CBSE SHUTIES ...ttt 64
REVIBI .. e 65
L0 1= o] PP 65
ANSIES e 65

5. Object-oriented ANalysiS and DESIONuuniiiiiieiiii e 67
ODJECHIVES ... ettt ettt ettt ettt e et et e e e e e 67
INEFOTUCTION ...t ettt et e et e et e e e et e e eeaa e eeeees 67
Modelling SLANAPOINESiieiti e 67
Classes and ODJECEScouviieiii e 68
ClasSITICAIONvueieii et 68
Classification in object-oriented deSIgNovvveiiiiiiiii e 69

A definition of class and ObJECEoooviviiiiii 69
EXAMPIES OF ClASSES ...ttt 69
Some thoughts on the relationship between classes and objects.............ccceveeenneee. 70
Concrete and cONCEPLUEI ClASSEScouuuiiiiiiiie e 70
ATIITDULES <. ettt 71
OPEIALIONS ...ttt ettt e e et e e ettt e e e e e et e e e b e een 73
Dynamic behaviour @nd SEALEiiiiiieeiiii ettt et 73
UML notation and CONVENTIONScceuuuiiiiiiiiieeiii et e e e eeei e e e 74
SYMDOL . e 74
NaMING CONVENLIONSeuuiieiiti ettt et e e e e e e e e 75
FINAING ClBSSES ... ettt e et e et e eeees 76
Relationships DEWEEN ClaSSEScoovuii e 76
Specifying relationships in detailovoiiiiiiiii 77
INNEITTANCE ...ttt e 78
ADSIFACE ClASSES ...ve et 79
Aggregation and COMPOSITIONc.uuiiiiiii it e e 80
AGOIEIALTION ...ttt 80
COMPOSITION ...ttt e e e et eeebe s 80
Self-ass0Ciation AN FOIEScoeuuiiiiii e 81
Link classes and [ink @ttribULESoooiiiiiiii e 81
CONSIrAINES BN NOLES ...ttt e et e e e b 82
N OB ettt 82
CONSITAINTS .ottt ettt e e e eaaas 82
Class-Responsibility-Collaborator Cardsc.uuieiiiiiiieiiiii e 82
From model T0 PrOGraM ettt e e et e e e eaa e eees 83
DYNamMiC DENAVIOUNeeiiiii et 83
INtEraCtion QiBgraMSoeiiiie et 83
SUMMBIY et ettt ettt e e e e e e e eae s 84
REVIBI .. e 85
L0 1= o] PP 85
ANSIES . 88

6. DAta-FIOW DIBOIAIMS .. .ceeitiieeeei ettt 93
OBJECHIVES ...ttt ettt ettt et et e e e ena e 93

Software Engineering

Introduction to data-flow diagramsco.ueiiiiiiiiiiii e 93
What are data-flow diagrams?oiiiiiiiiiii e 93
An example data-flow diagramcoooiiiiiiii 93
The benefits of data-flow diagramscccoviiiiiiiiiii e, 94
CBSE SHUTY ..ottt 95
The different kinds (and levels) of data-flow diagramscccccoiiiiiiiiiiiiiin 95
Elements of data-flow diagramscoouuiiiiiiiii e 95
PrOCESSES ...t 96
DatafIOWS ...t 97
DELa SLOIES ... ettt et 98
EXternal @ntitieSiiiei e 99
Multiple copies of entities and data stores on the same diagramc.. 99
CONEXE AIAOIAMS ..oeeee ettt et e et ettt e e e ea e e eera e eee 100
What is a context diagram?oooiiiiiiiiiiii e 100
Constructing a context diagramcoouuuieiiiiiieiei e 100
Level 1 dataflow diagramscooeuuioiiiiiieie e 101
What iS @16Vl 1 DFD? ...t 101
Constructing 1&VEl 1 DFDSciiiiiieccii et 101
Decomposing diagrams into level 2 and lower hierarchical levelsc..ccooeee. 102
What isalevel 2 (0r Iower) DFD?coouiiiiiiii e 102
Constructing level 2 (and lower) DFDs — functional decomposition 103
MEKING TEVEIS ... 103
BaAlBINCING ... ettt 104
N8 o= £ oo PP PRSPPI 104
Process JESCIIPLIONSiiiit et 105
V4= T = o] o U PP P T TPPPPT 105
An example in constructing a data-flow diagramcccoooiiiiiiiiiiii 106
Identify the system boUNdariesoooveviiiiiiiii e 106
FOIHOW INPUES ...t 107
FOIOW BVENES ..ottt 107
FITT TN QDS et 108
RO ..ottt aaeeeaaee 108
REVIBI .ot 109
(@01 o] 1 109
ANSIES .t 112
A D L=< o | R PP PP PPPPTT 129
ODJECHIVES ...t ettt 129
Fg11geTo [0 oi (oo H TP PP UPPPTT 129
ADSEFACTION ...ttt et eee 129
ATCIITECTUNE ...t 129
PaEEINIS .t 130
IMOTUIBITEY ..ttt e e eenaa s 130
INFOrMEtion NIAINGcooouuniii e e e 131
Functional iNdEPENTENCEu it 131
SEPWISE FEfINEMENTeee e 131
REFACIONNG ...t 132
DESIGN ClASSES ... ettt 132
REVIBI .ot 133
(00 1=S o] 1 133
ANSIES .ttt 133
8. DESION PAIEIMIS ...ttt 135
ODJECHIVES ...ttt 135
INtroduction t0 deSigN PALLEINSeiiiii e 135
The idea of @ PAEINcoeuiiii e 135
The origins of deSigN PATErNS ... oveeeieiei e 137
Patterns in SOftWare deSigNooeevuiiiiii e 138
Design patterns in object-oriented programimingc...ueeeeuinieeeriiieeeeiieeeenieeees 139
Definitions of terms and CONCEPLScouvuniiiiiiiiieiiii e 139

Software Engineering

Scope of development activity: applications, toolkits, frameworks 140
Pattern classifications and pattern cataloguec..vveiiiiiiieiiiiineeee e 140
Behavioural Patternscoouuuiiiiiie e 141
Creational PAILEINSccuuueiiiii et 143
SITUCTUIAl PAIEEINS ...ttt 144
HOW 0 USE 8 dESIgN PAILEIN ...t 145
PALEINS 1N JAVA .ottt et 145
The Observer Pattern iN JAVAoooeeuiiieiii e 145

The Model-View-Controller Patternocoevuiieiiiie e 149
Abstract factory facilities in JaVaveiiiiiiiii e 150
CompOSite PALENS IN JAVAuuniiieii e 151
REVIBI .ot 152
L@ 1= o] 152
ANSIES .t 154

9. SOFWEIE TESHING ... eeeeetni ettt ettt ettt ettt e et e e e b e e enaans 156
ODJECHIVES ...t ettt 156
INtroduction tO SOftWEAre tESHINGcuvuueiiiiii et 156
TR BN S et 156
The deVEIOPENS ... 156

An independent testing tEAMcoouiiiiiii e 157

THE CUSLOIMET ...ttt et 157
Principles of SOftWare tESHNGccuuuiiiiiie e 157
The completion of SOftWare testingc.vuiiieiiiiiiii e 157
Writing testable SOftWarecoouueiiiiii e 158

Test cases and test CaSe AESIGNvvuiiiiii et 158
TESHNG SLAIEGIES ... eeeett ettt ettt ettt et et eeenaans 158
UNIT EESIING ettt 159
INEEGIatioN TESHING ..vn i eeeeet et 159
Validation tESHINGoiiiie e 160
SYSEEM TESING .. eevveee ettt et 160
TESHNG BOVICE ..eveieeeii ettt 160
Flow graphs, cyclomatic complexity and white-box testingccooveeiiiinnnnns 161
BIaCk-DOX TESHING ... 164
Object-0riented tESHINGcieeee e 165
(D= o 8o o] oo ERU TP PPPTRRPPPPIN 165
Brute force debuggingoeeeueniiiiii e 165
BaCKLraCkingoooeeuiiiiiii e 165
CalSE EliMINALTIONueiiii et 165
2] o USRI 166
REVIBI .t 166
(01 o] 1 166
ANSIES .t 167

Vi

List of Figures

1.1. A diagrammatic representation Of @ SyStemMocvuiiiiiiiiii e 3
2.1. The code-and-fiX @pPrOaCHcouuiii e e 16
2.2. The process With FeQUITEMENTSuuiii e e e e e e e e e e e aneees 17
2.3. The layers of Software ENgINEEINGc..uviiuieiiii e e 19
2.4. The waterfall MEthOdcoouuiii e 21
2.5. The incremental development software Mmodelcoovviiiiiiiii e 22
A SR DIES o0 o) L= ol o) (0)4Y/ 11 4o 25
2.7. SELECT-ENErpriSe SCrEENSNOLuuuiiiiieii et e e e e e e e e e e s e e e e e et e e e eaneees 32
2.8, JAVA COUR ...ttt ettt e e s 33
2.9. A command-1ing JaVa INLEIPIELENc.uuiieeeeeiiee e e e e e e e e e e e e e e eanes 33
1IN0 IR o1 (0 TGl (= o (=== = 1= 1 o] = 43
3.2. The SYStemM DOUNCAIYcveeiiiiiei e e e e e 46
3.3. REPresentations Of USE CASESuuvivuiiiiiieiiieei e e e e e e e e e e e e e et e e et e e et eeaaeeaanaees 47
34, USE CASE @SSOCIBLION ..vueeiiiiiee et e ettt sttt e et e e et e e et e e e et e e et e e et e e eanns 48
3.5. Use of stereotypesin use case relationshipsccuvviiiiiiiiiieii e 48
3.6. A use case example, without generalisationc.covviiiiiiiii i, 51
3.7. Use Case geNEraliSAliONcvuueiiiieiiii e e e e e e e e e e e e e e e 51
3.8. Use case example, With generaliSationco.viviiiiiiiiiiciis e 52
3.9, A TUIL BXAMPIE oo 53
3.10. WiIthout generaliSationc.ueiiiieii e e e e e e e e e e e e e e e e e e aanaees 55
3.11. With generaliSationcouuuieiiiiiiiiei e e e e e e e e aaa 56
4.1. An example class model of an estate ageNCYuveeviieiiiieiiii e 62
4.2. An example of adataflow diagramcooveiiiiiiiiii 63
4.3. An example of a SeqUENCE AIAgraMcvvvnieii e e e e e e e e e aaeees 63
5.1. The UML Symbol fOr @ Classcivuiiiiiiiii e e e e e e e 74
5.2. A relationship bEtWEEN tWO ClaSSESuuiiiii i e e e e e eaees 76
5.3. Indicating MUITIPHCITY ...ovvniiiice e e e e e e e e aens 77
5.4. Generalisation-specialisation represented inthe UMLcocoviiiiiiiiiiiiin e 78
5.5. The representation of aggregation inthe UML ..o, 80
5.6. The representation of composition inthe UMLcoooiiiiiiiiii e, 80
B.7. LINK @ITDULES ..oeeveeeeiii e e e e e et e e e et e e e e at e een 81
5.8. The NOtation fOr NOLESuuiiiiiii et e e 82
5.9. Sequence diagram notation in the UMLcouoiiiiiiiii e 84
6.1. An example data-flow diagramcocoviiiiiii i 94
6.2. The NOtatioN fOr @ PIrOCESS .. .cuuuiiiieiii e e et e e e e e e e e e e e et e e e e eanaeeaen 96
6.3. Notation for @ data-flOWoouiiiii e 97
6.4. NOtation fOr @ dala SIOTEu. i 98
6.5. Notation for external entitiesooeuuiiiiiiii 99
6.6. How to notate duplicated external entitieScc.oveiiiiiiiiiiiii e 99
6.7. How to notate duplicate data StOrEScevueiii i e e e e e e 100
6.8. A context diagram for Video-Rental LTDc.ooviiiiiiiiiiiii e 100
6.9. A level 1 DFD for Video-Rental LTDooiviiinieiiiiiieeeiii et eeai e e 101
6.10. A level 2 data-flow diagram for Video-Rental LTDcoevviiiiiiiiiiieiieeee e, 102
6.11. Find the external eNtitieSooiieuiiiiii e 109
8.1. A simple pattern for abridgecoovuiiiiii i 135
S22 I 1Yo 1 (0 (= 136
8.3 THE @ICN ..t 136
GBS o 1= 150 136
8.5, SUDGIVISION ...ttt ettt e e ettt e e e ettt e e et e e e et eeea e eaee 137
L3 AN =11 071 o 137
A (=T o (T 2 o (o =P 137
8.8. Class diagram of the ObSErver Patterncovvvuieiiiieiii e e e 142
8.9. Class diagram for the Abstract Factory patternc.ooveveiieiiiiiiii e 144
8.10. Class diagram of the COmpOSItE PAILENNiviiieii e e e e e 144
8.11. ThE ECG ODSEIVEN ...ieeuiiieiiiiiie ettt e ettt e et e e et e e et e e et e e et e e e e et eas 147

Vi

Software Engineering

8.12. Java output of screen and font iNfOrMaLioNcccuuiiiiiiiiiii e 150
8.13. java.awt GUI components containers and layout Managersceveveevenneeeeiinneeennnnnn 151
9.1. FIOW graph NOLALIONeieiiiieeie e et eea e e 162
9.2. An example FIOW-Graph i 163

viii

List of Tables

8.1. Design patterns according to Gamma €t. @l.ccooveviiiiiiiiiii 141
8.2. Observable class methods in java.util.packagecc.uveiviiiiiiieii e 146

Chapter 1. Introduction

Objectives

At the end of this chapter you will have acquired an introductory understanding of what software and
software engineering are, as well as an understanding of some of the common myths surrounding the
practice of software engineering.

Introduction

It could be argued that information systems are vital components of any civilisation. The human
desire to record information goes back thousands of years to when humans first started painting on
stones. However, it is the practice of recording and displaying information in a systematic manner
that warrants the use of the term “information system”. Such practices can be easily found in great
civilisations, such as those of ancient Egypt, Greece and Rome.

The development and use of information technology (IT) has led to the birth of new generations
of information systems. Computer-based information systems (software systems) have dramatically
influenced our behaviour and the way in which we conduct every day activity. It isnot surprising that
the standing of any society in the world is now strongly linked to the level of penetration that software
systems have in that society.

In this module we shall use term software systems to refer to information systems that contain or
might contain software components. Although there are many information systemsthat do not involve
computers, such as a card filing system of a small library or a manager's list of contacts, ailmost all
modern information systems either use computers, or could use computers, to perform some of their
functions (such as cash registers for point-of-sales processing, and stock control systems for small
businesses).

Further, while we will occasionally mention information systems, this moduleis ultimately interested
in the software components of an information system, and how to engineer software that can be
reliably used by other people. Software is integral to computerised information systems. Without
the underlying software, the system will not be able to do what its users intend, and if the software
functionsincorrectly, so will the information system.

Information systems and software

Software systems are made up of the following components:

e Users— the people who add information to the system, request information from the system, and
perform some of the information processing functions.

 Procedures—the tasks performed by the human components of the information system.
 Information —meaningful datathat the system stores and processes.

» Documents — manuals on how to use the system, sometimes even files of data which should not
or could not be stored electronically.

» Hardware — not only the computers in the system but also any networks linking the computers,
the input devices and output devices.

» Software— computer applications performing some of the system functionsto record, process, and
regulate access to some of the information worked with by the information system

Importantly, we need to consider what software is. Software is typically defined to be instructions
that provide desired features, functions, and performance. They contain data structures which alow

Introduction

the software program to manipulate the information contained in an information system. Importantly,
software also includes documentation describing how the software performs the actions that it does,
and how the software may be used. Notice that some of the documentation isfor the software's users,
while other portions of the documentation are for its devel opers and maintainers.

There are some important properties of software that you should consider when thinking of the
discipline of software engineering.

* First, softwareis engineered rather than manufactured. Once the software has been devel oped, there
remains no significant “manufacturing” process that could possibly lower the software's quality
(i.e., introduce software errors, cause the software to deviate from what the customer requested, and
so on). The cost of developing software lies almost completely in the engineering of the software,
and not in the “manufacturing” of a*“product” that customers can be hold in their hands.

* Software does not wear out with use, as hardware might. However, this does not mean that software
does not degrade over time. A software program is continuously changed over its lifetime. If
these changes occur too frequently, the bugs introduced by each change may slowly degrade the
performance and utility of the software as awhole. Also, when software degradesin quality, there
are no “spare parts” which can be used as replacements.

» Unlike hardware, most software remains custom built, rather than built using “off the shelf”
components.

The importance of software engineering

Over the last few decades, software systems and the software that run them have become an important
component to many aspects of our society, from commerce to medicine, engineering, the sciences and
entertainment.

Importantly, theinfrastructure of all developed countriesrely heavily on software systems. Because of
this, itisimportant that the software we use and rely on are of ahigh quality and fulfil our requirements
of them. Gaining this high quality does not happen randomly or by accident — rather we need to
engineer that quality into the software that we use.

When software fails, people may be bankrupted and even killed (consider safety critical systems
which run planes, medical equipment, and so on). Because so much depends on software, software
has become important to business and the economy. This means that the software engineer is aways
part of alarger environment, consisting of customers, other software engineers, managers, and so on.
It isimportant that the engineer be able to interact appropriately with all of theseindividuals, and this,
too, is part of software engineering.

Systems

Because information systems are what we build using software, it is important to consider exactly
what it is that we are building: what is a system?

The word system is used regularly to refer to a coherent group of elements (or components) that
together aim to achieve a certain objective, or to have a specific purpose. A more rigorous definition
would describe a system as a group or combination of interrelated, interdependent or interacting
elementsforming acollective entity (awhole) with acontrol mechanism that hel psthe system achieve
itsgoal.

Systems live in environments that are relevant to their existence. They receive inputs from the
environment, and produce outputs for the environment. Systems tend to have a boundary that is
defined in relation to the external environments in which they reside. The survival of a system relies
on a control mechanism that regulates the processes of receiving inputs and producing outputs using
feedback.

Figure 1.1, “A diagrammatic representation of a system” illustrates many of the important features
of asystem:

Introduction

» There may be many different inputs
e There may be many different outputs

» The system is composed of interconnected components — the components may be of different
kinds.

» Some of the outputs of the system are fed back into the system, so that the system can control itself
and make corrective changes when unexpected or undesirable outputs occur

Figure 1.1. A diagrammatic r epresentation of a system

System ¥

- —— Outputs
> —zjj_ i
(S

™~

Inputs

" Feedback

These components play arole in the software that we create: the inputs to the system will become
inputs to the software. The outputs of the software will eventually be the system's outputs.

System boundaries

The smaller the system, the sharper its boundary. L arge systems may have multiple boundaries asthey
interface with multiple systems. The boundary also depends on the point from which it is viewed in
relation to other systems with which it interfaces.

An example of the complexity and difficulties of defining system boundariesisthe ATM (automated
teller machines). Consider the following candidates for system boundary:

» Thephysica machineitself
» The customer and the machine
» The machine and the bank's local database of customer accounts

» The machine and the bank's national network and central database of transactions and account
balances

» The machine and the staff that |oan and run regular software checks of the machine

Which of the above might be the “right” boundary for the analysis of the systemin whichthe ATM is
central ? Different analysts may choose different boundaries, and these boundaries may change during
talks with the customers wanting the system built, and with the ultimate end-users of the system. An
important skill which systems analysts and software engineers must develop is to determine which
boundaries are important to consider.

The software which we as software engineers develop are only a component of larger information
systemsin an organisation or group. Thismodul e concernsitself with the development and engineering
of software, but to effectively engineer such software we must be able to understand the information
system as awhole, and relate the software to it.

For effective and successful software engineering, software engineers havethe difficult job of learning
how the information system users perform their daily jobs, as well the tasks they attempt to achieve.

Introduction

If the software does not support the users in their tasks, then the software will not be used, and the
software devel opment has failed.

American Federal Aviation Authority example

During the development of the American Federal Aviation Authority (FAA) automated flight
control system software engineerstried to produce el ectronic counterpartsfor the flight strips
— little bits of paper giving details of a particular flight which would be moved between
operatorsand used for quick reference. Thistask proved to beimpossible and thefinal system
not only still has these bits of paper but the consoles have specia dotsto put them in.

Thisexampleillustrates an important point; that isany artificial system hasaboundary which
defines what is part of it and what is not. Sometimes this boundary is clear cut, say when
the computer screen and keyboard are the boundary for a system, other times it is not, say
when people and bits of paper form an integral part of the system. In the case of the FAA
system some of the functions that were considered part of the system are solely performed
by humans, but still within the boundary of the information system and the software being
developed.

Categories of information system and
software programs

Information systems

There are many kinds of software systems. Clearly, software used by each kind of system will differ.
Itisuseful (and common practice) to break them down into categories such as the following:

» Data-processing systems

* Real-time systems
 Decision support systems
» Knowledge-based systems

Different people and authors may break down the categories further, or provide other categories. The
list above is informal but useful, since (as we shall describe below) each category of system can be
distinguished from other kinds of information system.

Data-processing systems

Such a system generally has some large database of information and the purpose of the systemisto
provide quick, easy access and processing of data.

Depending on the degree to which data is processed and analysed, systems may be classified as
either transaction processing systems or management information systems. A system which basically
manages the data necessary to perform the daily business is a transaction support system. A system
which summarisesdatain aform useful for the management of abusinessisamanagement information
system.

Real-time systems

The environment outside the boundaries of the system is not under the system's control. Therefore a
system will need to be able to respond to data whenever it arrives — real time systems must respond
quickly to changesin the inputs from the environment. Typical response times would be of the order
of a few milliseconds or even microseconds. To achieve such a fast response the system needs to

Introduction

prioritiseitstasks, often dividing them into several processes that may interrupt each other. However,
assoon asthere are several tasks, they must be able to communi cate properly with one another and not
interfere with each other. Because of environmental interactions, rea -time systems have to be robust
to accidents, errors and failuresin the external parts of the system. That is, they must respond in asafe
and controlled manner in (almost) all conceivable circumstances.

A typical example is an auto-pilot that must adjust the engines and ailerons of an aeroplane to keep
it on course. An automated manufacturing system — such asis used in car factories — has to detect
when specific parts have arrived in designated zones of the factory, and then make sure that they are
correctly assembled.

Decision support systems

Although a data-processing system may help to identify a problem in the business, it does not suggest
any solution to the problem. In a decision support system, given a problem, the system attempts to fit
the data on the problem into some model and thereby suggest a solution to the problem. A decision
support system may have different models, say operational research or statistical models. The manager
chooses the model appropriate to the problem.

Ultimately, of course, any decision is made by the manager and not the system. The manager may
know or guess something which cannot be represented in the system's model's, and thismay affect their
decision. The system is simply there to clarify the problem and suggest solutions asfar asit is able.

Knowledge-based systems

In some situations it is not a large amount of data that needs to be handled, but a large amount
of knowledge. Knowledge is a combination of rules, laws, constraints and previous experience. A
knowledge-based system encapsulates a knowledge-base, like a database but filled with knowledge,
and enables the user, possibly unskilled in the problem area, to use the knowledge-base to solve
problems.

In business systems, the knowledge-based system often takes the form of what is called an “expert
system”. Expert systems embody the knowledge of a particular class of experts, such as medical
doctors, and the system (ideally) provides the same answers as an expert of that class would. In the

case of amedical expert system, this could be adiagnosis of anillness, and perhaps arecommendation
for a specific choice of treatment or for further tests.

Software
Software programs can be categorised in the following manner:
e System software
» Application software
» Engineering / scientific software
» Embedded software
* Product-line software
» Web-applications
* Artificial intelligence software
System software

System software is software written to service and support other programs. Compilers, editors,
debuggers, operating systems, hardware drivers, are examples of such software. Most system software

Introduction

deals heavily with computer hardware, multiple users, concurrent operations and process scheduling,
resource sharing and virtualisation, complex data structures and multiple external interfaces.

Application software

Application software are programs designed to solve a specific business need. M ost software operating
with business and technical data are application software, as are most real-time systems.

Engineering / scientific software

This software supports the use and production of scientific and engineering data sets. They are used
in almost all engineering and scientific disciplines, from simulating water flow, lighting conditions,
and aerodynamics, to examining the large scale structure of the universe. Engineering softwareisalso
used for design purposes (such softwareis called CAD software, for Computer Aided Design) and for
automating the manufacturing of goods (CAM: Computer Aided Manufacturing).

Embedded software

Thisissoftwarethat resides directly within some hardware component in order to provide control over
the component or other vital features required for it to function. Embedded software is widespread,
and can be found in everything from phones and microwave ovens to cars, aeroplanes and medical
equipment.

Web applications

A web application is an application accessed via a web browser over a network. Web applications
offer avariety of functions, and some application software are now implemented as web applications,
such as Google Daocs.

Artificial intelligence software

Artificial intelligence software (Al) has been defined as "the science and engineering of making
intelligent machines" (John McCarthy). Application domains that make use of Al software include
robotics, expert systems, pattern recognition, theorem proving and game playing.

Legacy systems

Whilealot of softwarethat isin useisfairly current, state of the art software, companies often rely on
software that has been in usefor years, or even decades. This older softwareis called legacy software.

Legacy software is often, by today's standards, of poor quality: inextensible, convoluted, badly
documented, and written in languages which are generally no longer used.

Worse, legacy software have often been continuously changed over decades to meet ever changing
business and system requirements, contributing to the software's degradation.

Unfortunately, such legacy software is long lived precisely because it supports critical business
systems. This makes it important that legacy systems be reengineered to remain usable in the future.
One can think of this as a slow evolution of the legacy software. This evolution, these changes, are
often done for one of the following reasons:

» Thebusinessis making use of a new computing environment or technology, and the software must
be updated to support this.

 The software must meet new business requirements.

» As newer information systems, databases, and so on, become available, the software must be
updated to be interoperable with them.

 Software must be modified to operate in a networked environment.

Introduction

Changes to software are inevitable and are not unique to legacy systems. Software engineering must
take thisinto account. This process of change is often referred to as software maintenance.

The benefits of software systems

The benefits of introducing new software are not always easy to identify. The person (or peopl€) who
are considering the introduction or extension of a software system (we shall refer to such a person
as the “customer”) may be very enthusiastic about the possible benefits of the new software, such as
providing “better service” and “more control”. However, given it isunlikely that the existing (manual
or partly software-based) system is ruining a business, the advantages of the new software may be
very difficult to quantify. In fact, unless the software is well-designed and properly thought out, it
may bring no overall benefits at all.

The potential for significant benefits and the differences information systems have made in other
organisations are an important motivation for many organisations to investigate the development of
new or extended software systemsin their businesses.

Organisations, their information systems, and the software they employ, are complex, and thereforethe
costs and benefits of information system and software devel opment are hard to estimate and measure.
Such systemsare hard to analyse, design and implement. For thisreason there has been much study into
the relationship of information systems and software within organisations, aswell asinto information
system and software development.

Broadly speaking, possible benefits can be divided into two categories:
« tactical benefits

* dtrategic benefits

Tactical benefits

Tactical benefits are ones which improve the day-to-day running of an organisation or group in
measurable terms.

Customers almost always anticipate or require that new software and systems deliver cost benefits.
In some cases software replaces an existing automated system, but the new software has cheaper
hardware and lower maintenance overheads. For instance, whereasingle, centralised computer system
is replaced by a network of smaller PCs. Or the software system replaces a manual system and so
savings may be made on paper, paper storage space like filing cabinets, and office space. There may
be animprovement in communicationsresulting in fewer telephone calls and faxes. In both casesthere
may well be a saving on the number of staff required to support the old system.

Another frequently cited benefits of software systemsaretheir speed and accuracy. Information can be
retrieved more quickly and with greater confidencein its accuracy. This can improve the productivity
of employees. It may also improve the movement of goods and the supply of goodsto customers. This
could result in an organisation being able to handle more transactions and expand its business.

Strategic benefits

Strategic benefits are about improving the nature or abilities of a group or organisation. With a new
software system, a business may be able to offer their customers new services. Or by examining the
information held, could new customers or products could be identified. More speculatively, enhanced
functionality might allow managers to quickly identify trendsin sales or spending. This could lead to
a competitive advantage in the market place.

With the introduction of expert systems, knowledge previously confined to a handful of individuals
can be distributed and made availabl e throughout a company. This could improve the functioning and
performance of a company in many ways.

Introduction

However, in many ways strategic benefits are even more difficult to quantify than tactical benefits,
and without careful planning and design they will simply not appear.

The reasons for change

People do not usually embrace change merely for the sake of it. There is always risk involved in
changing existing practices — to paraphrase an English saying “If it is not broken, do not fix it!”.

The simplest reason might be that people like the look or sound of new technology and a company
wants to be seen at the “ cutting edge” of technology. Installing a new hi-tech software system shows
the company off to good advantage. Companies can use this opportunity to reap some of the other
benefits that a new system might bring.

Or a company may realise that new technology brings new processing facilities and methods within
their reach.

More normally, companies develop new software systems as a result of external forces. Costs may
be rising and new software could reduce overheads. There may be competitive pressures and unless
changes are made to the business processes, a company will lose its competitive edge.

M ore mundane reasons for change includes new legislation requiring an update to business processes.
A shortage of appropriate staff can also drive the need for new software.

Whatever the reason, once acompany decidesto install new software, it makes sense to maximise the
return on the investment. Not only should the system address the problem at hand, but it should also
bring as many other benefits as possible. It is this escalation of requirements which can transform a
hi-tech business solution into a software catastrophe. We discuss this next.

Software myths

All people who come into contact with software may suffer from various myths associated with
developing and using software. Here are afew common ones.

Management myths

Our company has books full of standards, procedures, protocol, and so on, related to
programming software. This provides everything that our programmersand manager s need to
know. While company standards may exist, one must ask if the standards are complete, reflect modern
software practice, and are — importantly — actually used.

If we fall behind schedule in developing softwar e, we can just put more people on it. If software
is late, adding more people will merely make the problem worse. This is because the people already
working on the project now need to spend time educating the newcomers, and are thus taken away
from their work. The newcomers are also far less productive than the existing software engineers,
and so the work put into training them to work on the software does not immediately meet with an
appropriate reduction in work.

Customer / end-user myths

A vague collection of softwar e objectivesisall that isrequired to begin programming. Further
detailscan beadded later. If the goals/ objectivesfor apiece of software are vague enough to become
ambiguous, then the software will almost certainly not do what the customer requires.

Changing requirements can be easily taken care of because software is so flexible. This is not
true: the longer that development on the software has proceeded for, the more work is required to
incorporate any changes to the software requirements.

Introduction

Programmer myths

Oncethe softwareiswritten, and works, our job isdone. A large portion of software engineering
occurs after the customer has the software, since bugs will be discovered, missing requirements
uncovered, and so on.

Theonly deliverable for a project isthe working program. At the very least there should also be
documentation, which provides support to both the software maintainers, and to the end-users.

Softwar e engineering will make us create a lot of unnecessary documentation, and will slow us
down. Software engineering is not about producing documents. Software engineering increases the
quality of the software. Better quality reduces work load and speeds up software delivery times.

Review

Questions

Review Question 1
Read the following scenario about an online reservation system, then carry out the tasks below.
Global-Travel, an on-linereservation system

Global-Travel isanairlinethat sellsall itsticketsthrough an on-line system on the Internet. Prospective
travellers register their details by filling in the form available on the company's web site. Once a
registration has been confirmed as valid, the travellers can proceed by selecting the destination to
which they wish to travel, the date of travel, and the type of ticket they wish to purchase. Only those
of destinationsto which Global-Travel flies appear on the list of destinations for customersto choose
from. Once adestination has been selected, the date box displays only those days of the week on which
Global-Travel flies to the selected destination.

Once al ticket details are entered, the customer submits the details to the systems by clicking on
the appropriate button. The system responds by either accepting the reservation or rejecting it. If a
reservation is rejected, the system displays the reason (e.g., no available places on the specified date
or no places available on the specified date for the selected type of ticket). The customer may then
choose to change the date of travel, upgrade his/her ticket or abandon the reservation.

If areservation is accepted, the system prompts the traveller to proceed to the payment section to
purchase the ticket or reserve it for 24 hours. Global-Travel web site has a secure server and accepts
payments by most credit and debit cards. Oncethe traveller completesthe payment section, the system
displays the details of the purchased ticket and requests the traveller to check the details and confirm
or abandon purchase by clicking on the appropriate button.

The marketing department at Global-Travel has another information system that islinked to the online
site and monitors sales of tickets on al flights. It uses this information to frequently display various
promotions and special offers on the site. The accounting department system is also linked to the
online site and receives al payment information.

Review question tasks - Answer the following questions based on this scenario:

* Describe the context of Global-Travel online sales system.

» Describe the collection of information that is relevant to that context.

» Specify who has access to thisinformation.

A discussion of this question can be found at the end of the chapter.

Introduction

Review Question 2
Do the following, based on the Global-Travel scenario:
 Describe the inputs and outputs of the system.

» From the point of view of a prospective traveller, describe the feedback loops in the system and
how this affects the input and the output of the system.

A discussion of this question can be found at the end of the chapter.

Review Question 3

Read the following scenario about an automatic train system, then carry out the tasks below.
ARTC, an on-linereservation system

A railway authority have been asked to fit al its trains with an automatic signalling control system
within five years. The main objectives of the project was to increase the safety of rail travel by:

* reducing the number of trains that passes through red signals or possibly preventing trains from
passing any red signal.

* reducing the number of train accidents that result from head on collision or moving trains colliding
with stationary ones.

The “Automatic Railway-Train Control System” (ARTC) system should alert the train driver when
thetrain is approaching ared signal. The alert of ared signal must take the form of audible sound and
visible red light in the driver's cabin. The alert must start at a specified distance from the red signal
(called thered signal alert point), and at the very least the light must continue to be on until the signal
switches back to green. The aert sound must also stay on until the driver switchesit off. The switching
off of thelight is used as an acknowledgement that the driver has heard the alert. Thelevel noise from
the alert sound increases until it gets switched off.

The ARTC system checks and records the train speed each time it passes a red signal aert point
(RSAP). If the train speed was higher than it should be at this point, the system should alert the driver
to slow the train down.

The action taken by the driver after his/her train reaches a RSAP depends on the system that would
beinstalled. Currently there are three different systems available.

The firgt, called Fully Automatic Railway-Train Control System (FARTC), takes over the breaking
and the driving systems of the train after it passes a RSAP and gradually brings the train to a halt
before the red signal.

The second, caled Semi-Automatic Railway-Train Control System (SARTC), does the same as
FARTC but hasto be triggered by the driver and can be over-ridden also by the driver.

The third, called Automatic Alert Railway-Train Control System (AARTC), simply alerts the driver
of the red signal and expects him/her to stop the train before the signal.

The choice of system will depend on the budget and the time-scale allowed.
Tasks

Answer the following questions based on this scenario:

* Describe the possible boundary of each of the proposed system.

 Discuss how they differ and why.

10

Introduction

A discussion of this question can be found at the end of the chapter.

Review Question 4
Do the following, based on the ARTC railway scenario:

Describe some of the control (feedback) mechanisms that were mentioned in the case study and their
function. State the inputs and output of these mechanisms and how the feedback process could affect
them.

A discussion of this question can be found at the end of the chapter.

Review Question 5
Describe what is meant by an information system?

A discussion of this question can be found at the end of the chapter.

Review Question 6
Describe one example from your own experience of each of the following types of systems:
* Real-time systems
» Data-processing systems
 Decision-support systems
* Expert systems

A discussion of this question can be found at the end of the chapter.

Review Question 7

The United Kingdom has been debating whether to join the single European Currency for awhile now.
What might be some of the consequences to organisations whose businessis the export of hand-made
furniture to EU countries and the USA? How would these consequences influence decisions about
software and information system development?

Legacy systems are old software which continues to be used today, even though continual, ad-hoc
updating of the software has introduced many bugs and inconsistencies. What are the potential pitfalls
to keep in mind when updating software in order to avoid producing (in the long-term) inefficient
software that we would consider to be legacy software?

A discussion of this question can be found at the end of the chapter.

Review Question 8

A seminal work on software engineering is Fred P. Brooks's paper, “No Silver Bullet — Essence and
Accident in Software Engineering”.

An important concept that he tells usis that:

Fashioning complex conceptual constructs is the essence; accidental tasks arisein
representing the constructs in language. Past progress has so reduced the accidental
tasks that future progress now depends upon addressing the essence.

—Fred Brooks

In the above quote, Brooks is arguing that our ability to manage the direct tasks of the programming
and production of the software itself is no longer amajor problem: tools and techniques exist to help

11

Introduction

us handle this. The problem of software engineering isin managing the conceptual aspects of it: the
software's specification and design, and the testing of this specification and design.

We cannot expect toolsto automatically manage or drastically lesson the conceptual problems related
to software engineering: there is no “silver bullet”, no tool that will solve it al; thereis only sound
engineering practice.

This paper is available onlinein an abridged form. Find a copy and read it.

Thereis no discussion section for this review question.

Answers

Discussion of Review Question 1

Describe the context of Global-Travel online sales system.

Thesystemisinthecontext of providing aserviceto potential passengers, providing acommunications
medium for messagesfrom the marketing department and providing booking, reservation and payment
data to the sales function of the company.

Describe the collection of information that isrelevant to that context.

Information is collected from the customer, the marketing department, the seat availability database,
and the credit reference system.

Specify who has accessto thisinformation.

The customer has access to information fitting their request. Sales has access to booking, reservation
and payment information. Marketing has access to the sales information and the seat availability, on
which to base its promotion decisions.

Discussion of Review Question 2
Describe the inputs and outputs of the system.
Inputs from the customer include:

* Flight requirements

* Reservation/booking decision

» Payment requirements

Inputs from the marketing department include;
» Offer availability messagesto display
Inputs from the sales department include:

¢ Seat availability

» Payment acceptance decisions

Output to the customer include:

 Details of available flights meeting requirements
» Request for booking/reservation decision

* Request for payment

12

Introduction

» Payment acceptance decision

» Display of offers (as suggested by marketing)
Outputs to the marketing department include:

* Details of saleinformation

Outputs to the sales department include:

» Customer'sflight requirements

 Customers booing/reservation details

» Customers payment details

From the point of view of a prospectivetraveller, describe the feedback loopsin the system and
how this affectstheinput and the output of the system.

The system displays only information about flights meeting the traveller's requirements. If the
requirements change, the system responds with new suggestions.

If there are seats meeting traveller's requirements the system requests a booking/reservation decision.

The system responds to it information on the validity of the payment offered by the user.

Discussion of Review Question 3
Describe the possible boundary of each of the proposed system.

The boundary of FARTC is simply the system's interaction with the RSAP, the braking system itself
and some method for the system to know how hard the brakes need to be automatically applied.

The boundary of SARTC needs to include the driver, since the trigger by the driver will make the
SARTC system start to break the train. The system must also include the braking system to be applied
and the RSAP signal.

The boundary of AARTC should include the RSAP and the driver. Since this system does not make
the brakes come on, there is no need to include the braking system as part of thisinformation system.

Discuss how they differ and why

Thefirst system does not need to include the human driver — all that isrequired isasignal requesting
that the noise stop playing.

The second system must include both the driver and the braking system, since the driver needs to
engage the SARTC system, and can also provide the input of overriding the system.

The final system does not include the braking system at all, since it is simply an alarm system to be
switched off by the driver.

Discussion of Review Question 4
The FARTC system has three main feedback loops:
» The RSAP signal input triggers the brake
* When thetrain is stationary, we might assume the brake mechanism releases
» Thedriver switched off the light

The SARTC system has five main feedback |oops:

13

Introduction

The RSAP signal input triggers the warning

The driver triggers the system to start braking

The driver can trigger the system to stop braking

When the train is stationary, we might assume the brake mechanism rel eases
» Thedriver switched off the light

The AAARTC system has two main feedback loops:

* The RSAP signal input triggers warning

The driver switched off the light

Discussion of Review Question 5

We might define an information system as a system of interrelated elements working together to
achieve some goal, composing of:

* A context,
» A collection of information that is relevant to that context, and
» System functions to record, process, and regulate access to the information.

Obviously in this module we are most interested in information systems that are comprised chiefly
of software components.

Discussion of Review Question 6

Real-time systems; Examples should be systemsthat respond to changesin very short times. Examples
might include;

» automated braking systems on cars (that detect jamming and unlock the breaks for a fraction of a
second)

» automatic pilot systems (that detect undesirable plane behaviour and alert the human pilot)

» computer games (detecting joystick movements and changing the display in fractions of a second
to give the effect of movement)

» An autonomous robot fish (that swims in a river filtering poisons, avoid objects and surfaces to
recharge its solar cells

Data-processing systems. Examples should refer to systems that process large amounts of data, and
possibly provide communication with some larger network of computer-based systems. Examples
might include

 Point of salesterminals that process (and validate) credit card transactions

* Electronic mail systems to allow employees to communicate with each other in different rooms or
buildings

» Booking systems, such asan air-planereservation systemwhereby atravel agent placesareservation
for a seat into the records for a particular air-plane company, to prevent other agents booking the
same seat

Decision-support systems: Examples should be about systems that attempt to analyse data in terms of
certain model's, and perhaps predictions of future outputs based on extrapol ations of the data. Examples
might include:

14

Introduction

* stock re-ordering systems, that monitor stock changes and attempt to predict optimal ordering to
reduce stock keeping costs but ensure orders can be met without delay

» marketing systems that model likely demand and sales for new products based on timing and
advertising budget decisions

Expert systems: Examples should be about systems that model human expertise and decision making.
Examples might include:

* expert systemsthat process inputs against a knowledge-base of past situations and decision rulesto
make (and justify) suggestionsfor decisions (such as diagnosing illnesses or categorising applicants
for life insurance or loan applications)

» acar-diagnosis system to guide a telephone centre operator to ask questions about a car to locate
the problem so the right parts can be taken along by arescue vehicle

Discussion of Review Question 7
There are anumber of consequences, including:

* currency changes (EU countries would no longer need any change in currency, while the currency
to be exchanged with the USA customers will be different)

» lega changes — there may be new or changed import/export laws between the UK and EU
countries, possible less or different taxation

Implicationsfor software system are that any existing systemswill need to be changed. It might be that
the company has asister-company elsewherein the EU, so perhaps adecision about which information
system (or which bits of each) should be retained so that both companies will move towards using the
same system. The jobs done by staff for processing EU sales will probably be simpler (and different)
from the processing of USA sales, and the human and computer information system needs to be
adapted to make such different order processing straightforward.

An important thing to consider when updating software is that the changes are properly engineered:
while all changes to software can introduce inconsistent behaviour, inefficient behaviour, and bugs,
when bad software engineering practices are followed this is much more likely to occur.

15

Chapter 2. Process and Model

Objectives

At the end of this chapter you should be able to:
* Define software engineering.
Describe generic framework activities of the software engineering process.
* Describe various process models, such as the waterfall and prototyping models, in depth.
» Explain the difference between prescriptive and agile process models.

 Describe the main components of CASE tools, and how they can address system development
problems.

The software crisis

Therewere many difficultiesin the development of large software systems during the 1960s and 1970s.
The term “software crisis’ dates from that time. The problems stemmed from an inability to apply
the techniques used to build small software systems to the development of larger and more complex
systems. The typical way to develop small systems can be described as “code-and-fix”.

The code-and-fix approach to software development
The “code-and-fix” approach to software development is not a proper life cycle (see later this
unit). Code-and-fix development occurs when software engineers come together with a vague set of
requirements and start producing software, fixing it, and changing it until the correct product appears.

Figure 2.1. The code-and-fix approach

Programmers think
requirements are
understood

l

Code part of the
system

l

Fix any errors and
enhance if required

This is the simplest way to produce software and is invariably how every programmer learns to
program. But for anything other than small software projects, code-and-fix is a disaster for a number
of reasons:

16

Process and Model

» Thereisno way to estimate time-scales or budgets.

e Thereisno assessment of possible risksand design flaws: you may come closeto afinished product
only to find an insurmountable technical problem which sets the whole project back.

We only mention the code-and-fix approach in the context of life cycle models sinceit is a base-line
model which we should avoid. From a software engineer's point of view, code-and-fix isaworst case
scenario.

Many project failures resulted from the inability to scale the techniques employed when developing
small software systemsto handle larger, more complex systems. This failure leads to:

* never completed systems

* missed deadlines

* exceeded budgets

» asystem that does not do al that isrequired of it

» asystem that works but is difficult to use

» asystem difficult to modify to meet changes in organisational needs and practices

« aloss of trust from users, who may experience many problems with using the software.

These problems were largely due to the lack of any framework for the planning and organisation of
software devel opment projects. Although some software projects were organised, and these were often
the more successful ones, it was the luck of the draw whether a project manager had good intuitions
for software development, and whether or not problems arose due to misunderstandings between the
customers and the devel opers of the system. Likewise, there were no clear methodsto monitor whether
a system was soon to go over budget or miss deadlines.

From some of these problems we can see that at some stage the system developers attempted (not
always successfully) to understand the requirements for the new system. We can now include in our
diagram of the process these specified requirements for the new system:

Figure 2.2. The processwith requirements

Existing system
(with problems)

~

Specification of
requirements for new
system

e New system

Software engineering and the software
process

Recognising these problems, work was carried out to understand the process of software development
and to transform it into a reliable and rigorous discipline, like architecture or engineering. An

17

Process and Model

improved process should produce software that is correct, reliable, usable and maintainable. By
understanding the process, it should be possible to plan projects with more accurate predictions of
cost and time, and provide ways of monitoring intermediate stages of project progress, to be ableto
react and re-plan if a project begins to go off budget or timescale.

Software engineering isexactly the discipline of producing such software. Fritz Bauer defined software
engineering to be: “the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines. ”

Much research has been put into the study of past systems that were both successful and unsuccessful.
This can be summarised as:

» Some software development activities appear to be common for all successful projects.

» Some activities need to occur before others.

» Thereisaneed to both understand that requirements change, and to manage this change.

» Any existing systems need to be understood before working on the design of a new one.

» It is wise to delay decisions that will constrain the final system — this can be achieved by
initially designing an implementation-independent logical design (see the next chapter), before
committing to a detailed design for a particular physical set of hardware and software.

Analysis of such findings led to amodel of what is called the softwar e process, or system life cycle.

The software processis the process of engineering and devel oping software; a process model, or life

cycle model is a descriptive model giving the best practices for carrying out software development

(i.e., for carrying out the software process). However, aprocess model is often treated asa prescriptive

model that needs to be followed precisely, without any deviation. This should not be the case. The

specific model of the software process used should be tailored to meet the specific needs of the project
and the devel opers working on the project.

Note

The phrases* Software process’, “ Software Life Cycle”, “ System Development Life Cycle”,
“System Life Cycle’, “Development Life Cycle” are al used to describe the same concept.

The layers of software engineering

Software engineering is a discipline that can be pictured as being built up of layers (Figure 2.3, “The
layers of software engineering”).

18

Process and Model

Figure 2.3. Thelayers of software engineering

\“\ Quality

Software engineering demands a focus on quality. This should permeate throughout the rest of the
engineering discipline.

On top of this comes the foundation of software engineering: the software process. The processisthe
framework on which the rest of software engineering is built. The process defines how management
occurs, what the required input and output products are, what milestones should be reached, and so
on. The process also describes how quality should be ensured.

On top of process, software engineering consists of methods. These describe how the various portions
that make up the software process should be carried out. For instance, how to communicate with
clients, how to test the software, to gather requirements, and so on. This makes up the process model.

And above all of this, and in support of the whole discipline, are the tools. The tools support the
software process. Such tools are called computer-aided software engineering tools.

A generic framework of the software process

A software process consists of the activities that are carried out during the development of every
software system. There are specific activities which are carried out at specific times, as well as
activities carried out throughout the project's lifetime. Such life-long activities are called umbrella
activities.

A generic framework defining these activities for the software process can be given. It identifies
activities common to most of the models of the software process, although each model adapts the
activitiesto its own ends.

The activities are as follows:

» Communication - Thisactivity involvesthe gathering of software requirementsfrom the customer,
and related sub-activities.

» Planning - Thisisthe activity of planning the work required to devel op the software. Thisincludes
risk management, listing the associated outputs, and producing a schedule for the work.

* Modeling - Thisactivity isinvolved with modelling both the requirements and the software design,
so that both the devel opers and the customers can better understand the work being carried out.

19

Process and Model

» Construction - Thisis the development of the software. This activity also includes sub-activities
for testing the software.

» Deployment - The software is delivered, and the customer provides feedback on the software.

Software models

The framework just presented provides a list of generic activities common to most models of the
software process. However, each model treats the activities differently, and each model is suitable for
different projects and for different teams.

It is important to realise that the activities outlined in the process models given below should be
modified, based on:

e The problem having to be solved.
» The characteristics of the project.
» The nature of the development team.

» Theorganisational culture.

Prescriptive and agile models

Prescriptive software models are those which prescribe the components which make up a software
model, including the activities, the inputs and outputs of the activities, how quality assurance is
performed, how change is managed, and so on. A prescriptive model also describes how each of these
elements are related to one another (note that in this sense, “ prescriptive” is not meant to indicate that
these methods admit no modification to them, as we previously used the word).

On the other hand, agile software models have a heavy focus on change in the software engineering

process. Agile methods note that not only do the software requirements change, but so do team
members, the technology being used, and so on. We will discuss agile methods later in this chapter.

Prescriptive software models

The waterfall life cycle model

The waterfall model was the first, and for atime, the only process model. This model is aso known
asthe “traditional” or “typical” softwarelife cycle.

Note

Some writers use the acronym TLC, standing for “Traditional Life Cycle’. In this module
we will refer to this software model as the “waterfall” model. This model is sometimes also
called the “linear sequential” model.

The features of the waterfall model are asfollows:

» The system development process is broken into distinct stages.

» Each stage involves a particular project activity — such as “communication” or “construction”.

» Each stage, when completed, resultsin adeliverable (also called a product).

» Theinput to any particular stage are the deliverables from the previous stage.

20

Process and Model

» The model presents the stagesin a strict, one-way sequence — a project cannot go back to repeat

a stage once that stage has been completed. Any required re-work (as a result, for example, of
changing software requirements) is very limited.

The name “waterfall” comes from likening this method to ariver cascading over aseries of waterfalls:
the river is the output from each stage; the output from one stage is the input to another, in strict-
seguence, and at no point do the stages reverse; a project cannot go back to a stage that has previously
been completed.

Figure 2.4. The waterfall method

Communication

—

Planning

e

Modelling

Construction —l

Deployment

Each stage of the waterfall method flows into another.
Stages do not flow backwards through the model.

There are some dlight differencesin the way the waterfall model is presented between different books,
however these differences are usually related to the number and names of the stages. Any presentation
of the waterfall model will present avery similar sequence of stages to the following:

Communication
Planning
Modelling
Construction

Deployment

There are anumber of advantages to the waterfall model:

The stages consist of well-defined tasks which promotes good scheduling and cost estimation (if
al stages occur in the expected sequence once only).

The deliverables provide targets or milestonesto see how far ateam has reached in the devel opment
process.

Thelife cycleis broken into well defined stages — so staff expertise can be used efficiently (e.g., a
data modeller only needs to work on certain stages, a programmer only on other stages, and so on).

21

Process and Model

» At any one time the project team knows what should be happening and the deliverable(s) they are
to produce.

However, there are also anumber of major limitations of the waterfall model, which occur frequently
in software devel opment:

 Itisrarethat a software development project will follow the sequential process that the waterfall
model uses.

« Although the requirements are specified early on, user understanding and feedback of the software
will not occur until after the system is implemented, which is possibly too late (or very costly) to
change.

» Theuser may not be able to describe the requirements of the desired system in any detail early on.

» The model does not easily alow for the anticipation of change — some systems take years to
develop, but once the early stages have been completed the model commits the project to a fixed
specification of the system.

» Many projects based on the waterfall model stress the importance of certain products (documents)
being delivered at certain times— it is possible for a project to become managed in a bureaucratic
way, with documents being delivered on schedule, but the focus drifting away from developing a
usable, effective system for the users.

 If aproblemisidentified at alater stage, the model does not make it easy (or cheap) to return to an
earlier stage to rectify the mistake (since al intermediate steps will need to be repeated, resulting
in significant, unplanned, time and resource costs).

For many development projects, the limitations of the waterfall model are usually considered to far
outweigh its advantages.

Incremental process models

Incremental process models provide limited functionality early in the software's lifecycle. This
functionality is then expanded on in later releases. We will examine two such processes.

Incremental development software model

Incremental approaches attempt to maintain some of the advantages of the pure waterfall model, but
attempt to allow for greater change management and overall flexibility in the software process.

Figure 2.5. The incremental development softwar e model

A single iteration

Software development occursin small increments, allowing this
model to handle change far better than the waterfall method.

22

Process and Model

Theincremental model allows the devel opersto quickly release aversion of the software with limited
functionality, and then at each development iteration to add additional, incremental functionality. The
development in each iteration occursin alinear method, as with the waterfall model. 1deally, the most
important functions are implemented first and successive stages add new functionality in order of

priority.

By doing this, the full development task is broken down into smaller, more manageable portions,
allowing implementation problems to be highlighted before the full system is completed.

Incremental delivery is this process of releasing the product to the client at the end of each iteration.

This alows the client to use regular, updated versions of the software, giving them the capability to

judge the progress of the software development.

Although early, incremental delivery of the software is an option for project managers, it is not

necessarily the case that each sub-system is delivered to the user as soon asiit is completed. Reasons

for delaying delivery may include the compl exities associated with integrating the customer's existing

software system with the limited functionality of the new system — it might make better sense to wait

until amore functional implementation of the new system is completed.

Anincremental development approach has the following advantages:

» Theprocessismoreresponsiveto changing user requirementsthan awaterfall approach — later sub-
systems can be re-specified. Also a modular approach can mean maintenance changes are simpler
and less expensive.

» Thereisan opportunity for incremental delivery to users, so the users can benefit from parts of the
system devel opment without having to wait for the entire life cycle to run its course.

 Incremental delivery meansthat users have a portion of the software to examinein order to see how
well the software meets their needs, and whether the software requirements have to be modified.

» Completeproject failureislesslikely, since userswill have some working sub-systems even if time
and money run out before the complete system is delivered.

* The project can begin with fewer workers, as only asubset of the final product is being worked on.
» Therisk associated with the development of the software can be better managed.

» The time taken to develop previous iterations can be used as an estimate for the time needed to
develop the remaining iterations, and hence improve project planning.

There are some costs, and dangers associated with an incremental development approach though:

» Thisdevelopment model relies on close interaction with the users — if they are not easily available
or slow in evaluating each iteration, the whole process can slow down.

» Thereliance on user involvement can exacerbate the already difficult task of estimating the amount
of time and budget required.

* High user involvement means that resources are drawn away from the customer's normal operation
during system development.

Rapid Application Development (RAD) process model
Rapid Application Devel opment isan incremental process model that has afocus on short devel opment
cycles (hence the term "rapid"). This speed is obtained by using off-the-shelf components, and a

component-based design and implementation approach.

It has the following advantages:

23

Process and Model

» Development cycles are rapid, typically between 60 to 90 days.
It has the following disadvantages:

* For large projects, RAD may require a large number of people to split the project into a sufficient
number of teams.

The developers and the customers must be committed to the necessary activities in order for the
process to succeed.

e The project must be suitably modularised in order for RAD to be successful.

» RAD my not be appropriate where high-performance is necessary.

RAD may also not be appropriate when technical risks are high.
Evolutionary process models

Product requirements may change with time, even while the software is under development. Worse,
theinitial specifications may not be detailed, and tight deadlines may result in aneed to have software
quickly ready.

All of this pointsto a product that evolves over time, and evolutionary process models are designed to
satisfy the engineering requirements of these products. Evolutionary process models are, as we shall
see, iterative; they allow for the software engineer to deliver a product, and then iteratively move
towards afinal product as the understanding of the product improves.

We will discuss two such process models below. One disadvantage to keep in mind is that it can be
difficult to plan the number of iterations, and hence the length of the project, in advance.

Prototyping life cycle model

A prototype system is a smaller version of part(s) of the final system that gives the user a sense of
the finished system'’s functionality. It has some of the core features of the fina system and, where
features and functions are omitted, it pretendsto behave like the final system. Prototypesaretypically
developed quickly, may lack unnecessary features, may be buggy, and have poor usability. However,
prototypescanfill animportant rolein understanding softwarewhich does not have clear requirements.

Where the system to be developed is atruly new system, there may be no clear requirements defining
the software'sbehaviour. By building aprototype, both the devel opersand usershave somereal, visible
working system model on which to focustheir ideas. An analysis of this prototype forms the basis for
the requirements specification, and perhaps even some of the design. If thereis still uncertainty of the
new system and questions still remain, further prototypes can be developed (or an existing prototype
extended). In thisway, prototyping allows devel opers and customers to better understand incomplete
and fuzzy software requirements.

Once the devel opers and users have a clear idea of the software's requirements, the project can move
into a another development life-cycle, and the prototypes are thrown away. This is important, since
as we previously mentioned, the prototypes are generated quickly and are not designed to be robust
or complete.

To prototype quickly and effectively, fourth generation languages (4GLS), graphical user-interface
(GUI) tools (like those that come with Visual Studio, QT and GTK), and off-the-shelf componentsare
commonly used. The quality of the prototypeisonly of concern where it would hinder the prototype's
use in understanding the final software being developed. If the prototype is usable enough to meet the
objectives put forward for its devel opment, the prototype has been successful.

A diagram of the disposable prototyping life cycle stages is presented as follows:

24

Process and Model

Figure 2.6. Disposable prototyping

Initial analysis

Prototype objectives

Specify prototype

Implement prototype

Evaluate prototype

Prototype outputs
(requirements,
specifications, designs

'

Discard prototype and
use another software
model

As can be seen, after some initial analysis a set of objectives is developed for the prototype. These
objectives may differ between projects — perhaps detailed requirements need to be elicited, perhaps
alternative user interactions are to be evaluated and so on. Each version of the prototype should be
specified so that the software can be correctly designed and implemented — a prototype that does not
fully test the objectives is a waste of resources, and may be misleading. Once a prototype has been
completed it should be evaluated against its objectives. The evaluation decides whether the prototype
should be extended, a new prototype developed, or — if the specified objectives are met — if the
project can move on to devel op the software using another process model.

25

Process and Model

Advantages of prototyping include:
» Usersget an early idea of the final system features.

* The prototype provides an opportunity to identify problems early and to change the requirements
appropriately.

* The prototype is a model that all users and customers should be able to understand and provide
feedback on, thus the prototype can be an important tool to improve communication between users
and devel opers.

It may be possible to use aspects of the prototype specification and design in the final system
specification and design, thus some of the prototype devel opment resources can be recouped.

A mgjor problem with developing “disposable” prototypes is that the customer may believe it to be
the final product. Customers may not understand the need to re-engineer the software and restart
development, and may ask that the prototype be “ cleaned up” and released to them.

Boehm's spiral model

The spiral model was published by Barry Boehm in 1986. It provides an iterative, evolutionary
approach to software development combined with the step-by-step aspects of the waterfall process
model and the requirements analysis abilities of prototyping. It isintended for development of large,
complicated software projects.

This process model provides for the rapid development of progressively more complete versions of
the software. Each iteration of the evolutionary development will have a release, which may merely
be a paper model of the software, a prototype, or an early iteration of the software.

Each iteration of the spiral model contains al of the activities from the generic process framework
outlined above: communication, planning, modelling, construction and deployment. One can consider
aniteration to be an arc in a spiral: each arc contains the same breakdown of how the development is
approached, but each arc will focus on something new.

Each iteration also requires a certain amount of risk assessment, in order to lay out the plans and
determine how the project should proceed. Risk assessment will adjust the expected number of
iterations, and also affect what milestones are expected. The development of prototypes (as with the
prototyping life cycle model) is an ideal way to mitigate the risks involved with poorly understood
or vague software requirements.

The advantages of this model are:

» The spiral model considers the entire software life-cycle.

» Because of itsiterative approach, it is adaptable, and appropriate for large-scale projects.

However, the model does have disadvantages:

* It requires expertise at assessing and managing risk.

* It may be difficult to convince customers that such an evolutionary approach is necessary.
Component-based development

In this process model, software is developed by integrating pre-developed software components and
packages. This may be commercial, off-the-shelf components, or they may be components previously
developed by the software engineers themselves.

Each component needs to present a well-defined interface to allow for easy integration.
The component-based model proceeds through the following steps:

* Determine what components are available and evaluate them for their suitability.

26

Process and Model

» Consider how the component will be integrated with the software.

» Design the software architecture so that the components may be easily employed.

* Integrate the components into the architecture.

 Test the software to ensure that all of the components are functioning appropriately together.

This approach may lead to a strong culture of component reuse. It has been shown that this model
also leads to a 70% reduction in development time, an 84% reduction in project cost, and increased
developer productivity.

Thismodel issimilar to RAD, which we discussed earlier. Note that RAD differsin that it isfocused
on rapid development, rather than specifically on component reuse.

The formal methods model

The formal methods model focuses producing formal, mathematical specifications of the software
product. When the software is built to the given specification its behaviour will already have been
verified to strictly meet the software's specific requirements.

The importance of this model comes from its ability to discover ambiguity, incompleteness, and
inconsistency in the software requirements. This stems from the formal, rigorous, mathematical
approach employed for software specification.

Formal methods are important to the development of safety-critical software, such as that used in
aircraft avionics and medical devices. Formal methods have also been employed in business-critical
software, where, for instance, severe economic problems may occur if the software contains errors.

Even though this model can produce extremely reliable software, it has many disadvantages:
» The development of the software's forma model is both time consuming and expensive.
» Very few developers have any training in formal methods, and so require extensive training.

» Formal methods cannot easily be used as a means of communicating with the customer and with
non-technical team members.

Remember that expert training in forma methods is needed to employ this process model. Formal
methods also do not replace traditional methods: they should be used in conjunction with each
other. Importantly, employing formal methods does not mean that the software developer need not
adequately test the software.

The unified process

This unified process is aso known as the Rational Unified Process (RUP), after the Rational
Corporation who helped in the modd's development. The Rational Corporation also develops CASE
tools to support the use of the model.

The unified process is a unification of the various early object-oriented analysis and design models
proposed in the 80s and 90s. It is an attempt to combine the best features of these various models
which initially resulted in the unified modelling language (UML). The UML has become the standard
diagrammatic language for modelling object-oriented software.

While the UML provides a modelling framework for developing object-oriented software, it does not
provide any process model. This led to the development of the unified process, which is a process
model for developing object-oriented software, and uses the UML asits modelling language.

The unified processisan incremental software processthat isarchitecture driven, focuses on mitigating
risk, and drives devel opment through using use cases. Being architecture-driven, early iterationsfocus
on building the portions of the software that will define the software's overall architecture. Focusing
on risk, early iterations also focus on developing the high-risk portions of the software. Software

27

Process and Model

development iterations moves through five phases: inception, elaboration, construction, transition and
production. These phases cannot be directly mapped on to the generic process framework activities:
rather, each iteration contains some of the framework activities.

The inception phase is concerned with project feasibility: what should the software do, in broad
terms rather than specifics, and what are the high risk areas? Should the development go ahead?
Inception isusually ashort phase, often having no more than one iteration. Little development usually
occurs during the inception phase, but the software requirements are discovered using use cases
(communication), and a small subset of these requirements (those with high risk, and which focus on
the software architecture) are fleshed out (communication and planning).

Programming begins during the iterations of the Elaboration phase. Each iteration develops the
requirements fleshed out in the previous iterations (modelling and construction), and chooses more
requirements to flesh out (communication and planning) for development in the next iteration. The
elaboration phase completesonceall of the requirements have been fleshed out. However, thisdoes not
mean that communi cation and planning activities stop and do not occur in later phases: thereisaways
constant communication with the customer and an understanding that requirements may change.

Much of the construction activity occursin theiterations of the construction phase. Whiletheiterations
of the elaboration phase each had at least one meeting in which some use cases are fleshed-out and
selected for development in the next iteration, all the use cases have already been fleshed out when
the construction phase begins.

Thetransition phase containstheinitial portionsof the deployment activity: the softwareisgiventothe
customer for evaluation (called beta testing, which wewill discussin Chapter 9, Software Testing). The
customer's feedback will cause the software to be modified as required, and thus the transition phase
includes some communication and construction activities. The production phase includes the final
portion of the deployment activity: the software is now being used by the customer, and is monitored
and supported by the software engineer.

The transition phase employs a technique called beta testing. Beta testing occurs when the software
is given to the user to allow them to use the software and uncover any defects and deficiencies.
There should be aformal communications framework for the customer to report their findings to the
developers, and for the devel opers to assess these reports and to determine how to proceed.

Agile process models

Many of the process models we have just discussed have a perceived weakness: a lack of
acknowledgement in the importance of managing change in the software life-cycle, and an over-
emphasis on the process, tools, and documentation associated with them.

Agile process models were developed as a way to avoid these weaknesses. The Manifesto for Agile
Software Devel opment states that the core values of agile process models are:

 Individuals and interactions over process and tools.

» Working softwar e over comprehensive documentation.
» Customer collaboration over contract negotiation.

» Responding to change over following a plan.

The motivation for this manifesto isthat it is difficult to predict how software systems, the teams that
develop them, and the context in which the software is used, evolve. The market conditionsin which
the customer wished to use the software could change, and the customer's needs will evolve to meet
these new conditions, changing the software requirements. We may not even be able to decide on
the requirements when the devel opment work commences. Software engineers and their devel opment
methods must be agile enough to respond to al of these changes.

The customer is important in agile development. There must be effective communication between
the customer and the developers in order to properly understand what it is that the customer needs.

28

Process and Model

The customer usually also works closely with the devel opment team, allowing the devel opersto more
fully understand their requirements, and allowing the customer to more fully understand the state of
the software.

Apart from stressing closer communication between customer and devel oper, agile models also stress
better communi cation between the members of the team creating the software. The most efficient form
of communication is considered to be face-to-face communication, rather than documentation.

While agile development is strongly driven by the customer, it also recognises that any plans laid
out to meet their requirements may change. This generally means that agile process models use an
incremental / evolutionary approach to development, delivering multiple increments of the software
to the customer. This allows the customer to have working software, to evaluate the software, and to
ultimately allow the devel opers to more effectively respond to the customer's requirements.

Apart from not adequately dealing with change, prescriptive models also do not necessarily deal well
with the differences between people.

For instance, people differ in the skills they have, and the levelsin which they have these skills; they
differ in how well they communicate, and in which mediums they communicate the best in (verbal
or written, for example).

A process model may deal with the differences between people either with discipline (i.e., thereareno
options other than to follow the process activities as outlined by the process model) or with tolerance
of these changes. While thisis clearly a continuum, prescriptive process models can be characterised
as choosing discipline over tolerance, and agile models as choosing tolerance over discipline. There
isatrade off involved in shifting from atolerant to a disciplined process model, and vice versa: while
tolerant models are easier for devel opers to adapt to, and hence more easily sustainable, disciplined
models are apt to be more productive.

The features of agile process models

The key features of an agile process model can be summarised as follows:
» The software itself is the important measure of the team's progress, rather than documentation.

» The development team has autonomy to determine how to structure itself, handle the development
work, and apply the process model.

» Adaptability to change comesin large part through delivering software incrementally.

» Adaptability also comes from frequent delivery, so that customers can more easily examine the
software and provide feedback.

» Theprocessistolerant: it is adapted to the development team's needs.

» Software is important, documentation less so: this means that design and construction are often
heavily interleaved.

Extreme programming

Planning

We will discuss the most widely used agile process model, extreme programming. Extreme
programming is an object-oriented development approach and provides four framework activities:
planning, design, coding and testing.

Planning begins by creating user stories, which are similar to use cases, which we will cover in depth
in Chapter 3, Reguirements Engineering. User stories relate how the software will be used, and what
functionality it will provide. The customer then prioritises these stories. The development team, in
turn, determines the amount of development time required to develop the story.

29

Process and Model

Design

Coding

Testing

The stories are grouped to form deliverables. These are the deliverables that will be given to the
customer at each increment. Each deliverable is given a delivery date.

Importantly, the project velocity is determined at the end of the first increment: thisis essentially the
time take to devel op the number of stories that were delivered in the first increment. This can be used
to better estimate the delivery times for the remaining increments.

Note

New stories can be added at any time. The new stories are prioritised, and then added to an
appropriate deliverable based on this priority.

The design activity in the extreme programming process focuses around class-responsibility-
collaborator (CRC) cards (see Chapter 5, Object-oriented Analysis and Design), which the devel opers
useto organisethe classesthat need to be implemented in the software. These cardsarethe only design
documentation produced using this process model.

When the appropriate design isdifficult to decide upon, a prototyping method isemployed. The design
isquickly prototyped to evaluate the risks associated with it, and to estimate the required time needed
to implement the story. This prototyping is called a spike-solution.

Extreme programming encourages devel opers to reorganise theinternal structure of the code (without
atering the program's behaviour) in order to make devel oping the software easier, and to make it less
likely that bugswill beintroduced in future work. This process of reorganisation is called refactoring.

Note

Because of the refactoring, the CRC cards often need to be modified. The design should not
be viewed as something set in stone, but as something flexible, that changes as the software
does.

Extreme programming has a number of distinctive coding practices. First, before coding begins, the
process model recommends devel oping unit test casesto test each of the storiesbeing developed in that
increment's release. The devel opers then code towards satisfying those unit tests. This also alowsthe
programmer to better understand how the code will be used and how the code should be implemented.

The second distinctive feature is pair programming: al code is written by pairs of programmers,
with one developer programming and the other ensuring that the code follows an appropriate coding
standard.

Asjust mentioned, unit testsarewritten before coding begins. It isal so recommended that aframework
isin placeto run al the unit tests, allowing them to be easily and repeatedly run. This also allows for
software testing to occur on adaily basis.

Apart from unit tests, acceptance tests are tests defined by the customer. They focus, by their nature,
on the functionality visible to the customer, and will ultimately derive themselves from the stories
used to develop the software.

Advantages and disadvantages

Extreme programming has the following advantages:

» Extreme programming is an incremental process model, and so the customer will have working
software very early.

30

Process and Model

» The customer works closely with the developers, so the devel opers have a better understanding of
the software requirements.

 Pair programming allows for quality checks of code as programming happens.
» Extreme programming has a strong focus on accepting changing project requirements.
Extreme programming has the following disadvantages:

« Much time might be spend re-coding the software, rather than focusing initially on a better design.

Differences in life cycle models and inconsistent use of
terminology

There are no “officially” agreed set of terms used in descriptions of software development. Likewise,
there isno standard set of stagesin the waterfall-model (and many other models). When reading texts
from difference sources, and when speaking with information systems professionals, it iswise to bear
in mind the meanings of the terms being used, and if necessary clarify how the terms are being used.

Such differences are not a bad thing — they are a result of both the relatively small time that
information systems and software development has been studied for, and reflect the dynamic
viewpoints and interpretations of what we have learnt about software development to date.

Note

Do not take for granted that a particular book your are reading or person you are speaking to
has the exact same understanding of the waterfall model, or of aterm such as, say, “system
design”, that you have in mind.

Avoid having asingle“ correct” version of alife cycle model, stage or deliverable, especialy
since the models and deliverables should be adapted to fit the needs of the development team
and project.

A useful learning activity to apply to each different reference source you useisto create asummary of
the terms used and the model stages. Asyou work with different sources note the differences between
the sources. Y our own understanding will improve as you attempt to build an inclusive and general
picture of the stages and deliverables of different views of the software life cycle.

Computer Aided Software Engineering: CASE

The role of tools in engineering systems development

Each activity in a process model has tasks to be performed and deliverables to be produced. Various
software tools have been developed to support software developers using a particular process model.
Thesetools support project management and monitoring and the use of any special techniquesrequired
by aparticular process model, such asthe UML. CASE (Computer-Aided Software Engineering) tools
can also support the integration of several different deliverablesto provide a consistent, overall model
of the system being developed. Such atool facility is usually said to be performing consistency or
integrity maintenance and checking. Although there are simple, single-technique tools (such asfor the
UML), sophisticated tools exist to provide integrated support for many parts of a process model.

CASE tools

Thereareawiderange of software tools being used to support information system devel opment. Some
examples include:

» programming language compilers and debuggers

* project planning and costing applications

31

Process and Model

* help-file author applications
* version control support systems
» program code generators and “intelligent” program editors

 fully integrated suites supporting construction and consistency checking between multiple
modelling techniques

The most sophisticated of CASE toals is the last in the list — the fully integrated tools supporting
multiple modelling techniques. Some authors argue that any software application that helps in the
system development process is a CASE tool, including:

* word processors
 spreadsheets
 genera purpose drawing and painting applications.

We shall define a CASE tool as follows: a CASE tool is a software application (or integrated suite
of application) whose sole purpose is to support one or more aspects of the software development
process. Theinputs and outputs of a CASE tool are either final system components, or artifacts whose
purpose in some way supports system devel opment and management.

The above definition excludes general purpose applications such as word processors and drawing
packages.

It used to be common to make a distinction between three classes of CASE tool:
» Upper-CASE
* Lower-CASE
* |-CASE
Upper-CASE

“Upper-CASE” refers to CASE tools that support the early, abstract, “higher-level” activities of the
system development process activities such as requirements elicitation, system analysis, creating
logical design models, and so on. Activities which actually involve detailed “lower-level” design and
implementation issues such as coding and testing are covered by “Lower-CASE” tools.

Example of Upper-CASE tools are the SELECT-Enterprise CASE tool, and ArgoUML. They are
sophisticated tools, supporting activities such as logical data modelling and data flow process
modelling techniques.

The following screen shows the Entity-Relationship Diagram window of SELECT-Enterprise:

Figure2.7. SELECT-Enter prise screenshot

| PRGPERTY

i rEtehied vt —o—
= | Bromert iy
|

32

Process and Model

These notes will, however, mostly be making use of UML CASE tools, such as ArgoUML and
Umbrello.

Lower-CASE
Activities which involve “lower-level” design and implementation issues are known as “Lower-
CASE". Examples of Lower-CASE tools are program code compilers and debuggers, interface
building programs and so on.
The following is a screen shot from a Lower-CASE tool — Symantec's Visual Cafe environment for

Java software development. In this screen we can see some Java program code and the corresponding
interface objects on screen:

Figure 2.8. Java code

ual Cafe - EMAIL VFF‘

"'Dmm,; LR 3T K| ok l—jEdn =l el
N = EE e f e

= awT [AWT Addiions | AWT Mutinedia | Swing | Swing Cortamers | 5 wing Additicns |

. E-Mail Response Form
'nrsmams Last Name: How many PC's in

i Couniry USA ~| Howyou heard aboutus: [Advert
r T

B 3§ c:\apps\VisualCale\Samples.. [Bi[=] B4
. Objects: |93 fisthame -

s e | * =
CEmEEme | | . =
4 basic extension of the=liciblafothe users af mn lime. Clickik

g fig , |
= fisiame = * laccording to the instructions to the lef
- 3 -i //package symwantec.itools.al
Foregound : K . lken as lrom 0 UrErmAllE o

Inherk Back! §| iwport java.awc.® i —

Inbeerit Font In senn o ' o uremail@yo

Inhert Fareg S

Hame . . |Registation Ems

Test :

Wishle - - Amail yourmailsen
i » i : folinkto after g jieww yourm
For Help. press F1 f LM :

The following screenshot is another example of Lower-CASE — the command-line based java
interpreter provided by the Oracle Corporation (previously owned by Sun Microsystems):

Figure 2.9. A command-line Java inter preter

Sl 2 25 Al

Enter “help” at the prompt for infermation
C:WIHDOWS ed . \jdk1.2
C:\jdk1.2¥cd bin

C:vjdk1.2%bin>java
Usage: java.exe [-options] elass [args...]
(to execute a class)
or java.exe —jar [-optiens] jarfile [args...]
(to execute a jar File)

where oplions inelude:
-cp -classpath <{directories and zip/jar files separated by ;>
set search path for application classes and resources
-D<name>=<value>
set a system property
-verbose[:class}gc)ini]
enable verbose output
-version print product versiom
print this help message
print help on non-standard options

C:\jdk1.2\bin>
C:jdk1.2\bin>

I-CASE

The“1” inI-CASE standsfor “Integrated”. The most powerful CA SE tools offer functionsto integrate
arange of different kinds of modelsfor a system, to manage amore complete picture of asystem. Such
integrated tools can check multiple models for consistency, in addition to assisting system modellers
to handle the “ cascade” of changes that occur when a change in one model requires arelated change
in another.

33

Process and Model

Each I-CA SE tool tendsto be devel oped to support aparticular process model. Those CA SE tool s that
do not provideintegration between multiple models or products may be used for many process models
— for exampl e, regardless of the model, at some point a code compiler (or interpreter) will be needed.

IPSE — integrated project support environment

Integrated Project Support Environments are integrated applications to support project management.
These usually provide some combination of project planning/scheduling, costing, version control of
models and software components, and support for project management documentation and reporting.

Critique of CASE

Advantages of CASE

CASE offers anumber of advantages for the development of systems:

CASE toolsalow for the faster development of models, and provide support for creating diagrams.

Some CASE tools offer ssimulation of the system being modelled (e.g., given an event, possible
system responses can be traced).

CASE tools can be used to maintain a central, system dictionary, from which all models draw their
components.

CASE tools can help the team be more positive about improving models when errors or
inconsistencies are identified.

CASE tools provide consistency checking between different types of model.
CASE tools can provide notation and documentation standards in and between projects.
CASE tools provide navigation support between related parts of models and diagrams.

They provide automated documentation and report generation from the system models and main
dictionary.

IPSE CASE tools increase the rigour of project planning and management, and support
straightforward re-planning and response to unexpected events.

Disadvantages of CASE

Although there are clearly many advantages, there are a number of potential problems with CASE:

They can be very expensive.
Project staff require expertise (or training) on the software.

A particular CASE tool based around a single methodology will force a project to commit more
strongly to the methodol ogy than they might wish to have done.

There is a danger that high quality models and diagrams can lead to poor software development
— the models may look impressive, but it is the quality of the system and not the diagrams that is
fundamentally important.

Remember that having consistent models of the software does not guarantee that the software will
meet the user requirements.

Conclusion

It would be a poor project management these days not to take advantage of one or more CASE tools
for al but the very smallest of system development projects. Software support for the activities and

Process and Model

production of deliverables during system development has progressed with the profession's increased
understanding and modelling of the system development process.

Some I-CASE tools provide support for a wide range of high- and low- level products of the life
cycle, thusblurring the distinction between Upper- and L ower- CA SE — such products can work from
abstract models such as those produced by the UML, and provide skeletal databases and computer
programs.

Review

Questions

Review Question 1

What isalife cycle model?

A discussion of this question can be found at the end of this chapter.
Review Question 2

What are the activities of the generic software process?

A discussion of this question can be found at the end of this chapter.
Review Question 3

What features of the waterfall life cycle model separate it from other models?

A discussion of this question can be found at the end of this chapter.
Review Question 4

Describe the disadvantages of the waterfall model.

Answer to this question can be found at the end of this chapter.
Review Question 5

What are the main features of the prototyping life cycle model ?

A discussion of this question can be found at the end of this chapter.
Review Question 6

What are the points of the Agile Manifesto?

A discussion of this question can be found at the end of this chapter.
Review Question 7

What is a CASE tool ? Provide some examples of CASE tools. Try to also provide examples of tools
that you may have used before.

A discussion of this question can be found at the end of this chapter.

Review Question 8

Describe some of the advantages of CASE?

35

Process and Model

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

A life cycle model, or software process model, is a description of the best practices for engineering
and developing software. It is usually broken down into stages, describing the deliverables produced
during each stage, and describing the order or iterative cycles of the stages, and when each stagewould
be appropriate to perform.

Discussion of Review Question 2

There are five generic activities:
o Communication

* Planning

* Modeling

» Construction

» Deployment
Discussion of Review Question 3

The waterfall model breaks the system development process into a linear sequence of stages, each
involving aspecific activity. Each stage produces deliverables that become the inputsto the following
stage. Once a stage has been completed it cannot be revisited — so decisions made in early stage are
committed to and determine what happens at later stages.

Discussion of Review Question 4

The Waterfall model assumes that there is afull understanding and specification of the requirements
at the beginning of the project, and that these requirements will not change during development.
Since the deliverables at each stage is usualy not software, it is easy for none-software related
deliverables — and the bureaucracy surrounding these deliverables — to become the focus of the
software devel opment. Because of the linear nature of the model, problemsidentified in earlier stages
become progressively more difficult and expensive to fix in later stages.

Discussion of Review Question 5

The prototyping model attempts to produce a small version of the final system that has only some of
the final software's functionality. Prototype life cycle models allow for the developers and users to
explore the uncertain requirements of the software system, and an analysis of the prototype can form
the basis of a requirements specification for further development. Because prototypes are generated
quickly and are incomplete, once the requirements are better understand the prototype is discarded
and development restarted using another process model.

Discussion of Review Question 6
There are four points:
 Individuals and interactions over process and tools.
» Working softwar e over comprehensive documentation.

» Customer collaboration over contract negotiation.

36

Process and Model

» Responding to change over following a plan.

Discussion of Review Question 7

CASE tools are software whose sole purpose is to support one or more aspects of software
development.

Common examples include compilers and debuggers — if you are using Ubuntu or OS X, that
will often be GCC for the compiler, and GDB for the debugger. There are also many CASE tools
for planning and software costing, such as Microsoft Project. Other case tools include those for
authoring help files, version control systems (such as Subversion, Bazaar, Mercurial and Git), code
generators and program editors (such as Emacs, Visual Sudio and XCode), and tools providing access
to modelling techniques such as the UML (for example, ArgoUML).

Discussion of Review Question 8

Case tools alow for the faster development of various software models, and can sometimes even
simulate portions of the software from these models. Some tools allow a central dictionary to be
maintained where each model can take their components from. They can automatically check for
consistency between various models, can provide a standard for notation and documentation, and
can provide easy navigation between different portions of the models. They can support planning the
activities of the software development life cycle, and can support the programmers directly with their
development (by providing access to documentation, report generation, by keeping track of changes
made to the source code, and so on).

37

Chapter 3. Requirements Engineering

Objectives

At the end of this chapter you should be able to:
» Explain the need for requirements engineering.
» Giveaseries of steps for use in performing requirements engineering.

» Create and interpret use case models.

Requirements engineering

The first two activities in the generic process framework is that of communication and modelling.
A large portion of these activities are concerned with discovering the requirements of the software
which the customer is asking to have developed. This chapter deals with this process of requirements
engineering.

Note

Aswith all other activities in a process model, requirements engineering should be tailored
to fit the devel opers creating the software, the product being created, and the overall process
model being employed. In the previous chapter you could aready see this happening with
the extreme programming software process model, which limits modelling to the creation of
CRC cards (see Chapter 5, Object-oriented Analysis and Design).

Requirements engineering is concerned with understanding the software system that the customer has
requested. It provides the base on which software design and programming can proceed. Importantly,
if the devel opers do not adequately understand the requirements, it isvery likely that the software will
not meet the customer's needs. This makes understanding the customer's requirements important to
the success of the development project.

What is requirements engineering?

At its most essential, requirements engineering is focused on discovering what it is that should be
developed (and not how it should be developed). There are a number of aspectsto this:

* What does the customer want?

» What does the user require in order to use the system?

» What will the software'simpact on the users be?

To discover thisinformation, requirements engineering contains a number of overlapping steps:
1. Inception, in which the nature and scope of the system is defined.

2. Elicitation, in which the requirements for the software areinitialy gathered.

3. Elaboration, in which the gathered requirements are refined.

4. Negotiation, in which the priorities of each requirement is determined, the essentia requirements
are noted, and, importantly, conflicts between the requirements are resolved.

5. Specification, in which the requirements are gathered into a single product, being the result of the
requirements engineering.

38

Reguirements Engineering

6. Validation, in which the quality of the requirements (i.e., are they unambiguous, consistent,
complete, etc.), and the developer's interpretation of them, are assessed.

7. Management, in which the changes that the requirements must undergo during the project's
lifetime are managed.

Requirements engineering will usually result in one or more work products being produced. These
products, taken together, represent the software's specification (see the specification step previously
mentioned, and detailed below). These work products, however, do not have to be formal, written
documents — indeed, the work products can be a set of models, aformal mathematical specification,
a collection of use cases or user stories, or even a software prototype.

Note

These steps are overlapping for avariety of reasons. Y ou should be able to notice that some
of them, such as management, must occur throughout the communication and modelling
activities. Negotiation will also occur at each of the various requirements engineering
steps. More importantly, a process model which understands that requirements may be
(initially) poorly understood, and that they may change through the project's lifetime, will
also iteratively collect and detail the use cases (consider the unified process model from the
previous chapter). This iterative process will forcefully overlap all of these steps.

The steps in detail

Inception

The requirements engineering process begins by examining the problem which the software should
solve and gaining an understanding of both the problem's nature and the nature of the desired solution.
This should be done in a context-free manner, that is, a manner which does not presume to know
anything concerning the problem, the customers, the users, and the requested solution. The following
guestions may be asked:

* Who isrequesting the software?

* Who will use the software?

* What is the benefit that the software will bring?

It is important to identify the stakeholdersin the project. Stakeholders are the people who will find
benefit in the project and the software being developed. They may include:

» Customers
* End users
* Business operations managers

 Product managers

Advertising and marketing staff
» Software engineers
 Support engineers

Each of the stakeholders will have a different view on what the software product should do and on
what the software engineers should focus on. This might be on creating “sexy” features (from the
marketing department), staying within budgets and deadlines (from managers), maintainability (from

39

Reguirements Engineering

support engineers) and so on. Out of these views, the requirements engineer should determine which
requirementsthere are aconsensuson, and on which requirementsthe stakehol ders disagree. Resolving
disagreements between stakeholders makes up the negotiation step.

Something to consider during inception is the effectiveness of the communication between the
requirements engineer and the customers. This may be done by, for example, asking the customer if
they feel that they have been asked appropriate questions concerning their problems, and if the person
communicating with the requirements engineer feels that they are (or are not) the person who should
be answering the engineer's questions.

Elicitation

This step is concerned with identifying the overall problem the software is attempting to solve,
proposing solutions, negotiating between the differing approaches to solving the problem, and finally
specifying a basic set of requirements.

This can be done by calling a meeting between all of the stakeholders. It is important to nominate
someone to act as a facilitator, who will guide the meeting. Each of the attendees should bring to the
meeting alist of:

* objectsthat make up the system'’s operating environment

* objects used by the system (such as those things which make up the input to the system)
* objects produced by the system

* the services that interact with these objects

* various constraints, such as time and budget constraints, interoperability constraints, performance
restraints, usability constraints, and so on.

Elaboration

This step involves expanding on the requirements defined in the previous two steps, and from these
requirements producing an analysismodel, which isatechnical model of the software and itsfunctions.

The construction of analysis modelswill be discussed in detail in the following two chapters.

Negotiation

This step involves negotiating between the various stakeholders in order to remove any conflict in
the requirements. A useful technique for resolving these conflicting requirements is to provide each
of the stakeholders with a finite number of priority points. They may then alocate points between
the conflicting requirements as they see fit. The overall importance of any requirement can then be
determined by the number of priority pointsthat it has received.

Specification
The specification step produces the final product of the requirements engineering process. It describes
the software, both its functions and constraints. The specification need not be a written document,

but could also be a graphical model (such as those produced using the UML), software prototype or
formal model, or a collection of these.

Validation

This step is concerned with ensuring that the gathered requirements in the software specification
meet certain standards of quality. For example, have the requirements been written to the proper

40

Reguirements Engineering

level of abstraction, or do they provide too much technical detail for the given stage of development?
Is the requirement necessary, or something not essential to the software? Are the regquirements
unambiguous? Do requirements contradict other requirements?

A useful action during validation isto ensure that each requirement has a source attributed to it. In this
way, if more information is required, the requirements engineers know who to contact.

Management

Requirements change over time; requirements management is concerned with controlling and tracking
change in the requirements.

Requirements management proceeds by associating requirements with various aspects of the software
engineering process. Asthese aspects are changed, the requirements associ ated with them can be easily
identified and changed. As these requirements are changed, all aspects of development associated
with the modified requirements can be examined, and in this way the changes can more easily be
propagated through the project.

Such an association between requirements and aspects of the project can be done using a table: each
row in the table represents a specific requirement, each column an aspect of the software project. The
entries mark whether arequirement is associated with that aspect.

Use case modeling

Use case modelling is a useful tool for requirements elicitation. It provides a graphical representation
of the software system'’s requirements.

The key elements in a use case model are actors (external entities), and the use cases themselves. In
outline, a use case is a unit of functionality (a requirement), or a service, in the system. A use case
isnot a process, or program, or function.

Because use case models are simple both in concept and appearance, it isrelatively easy to discussthe
correctness of a use case model with a non-technical person (such as a custome).

Use case modeling effectively became a practicable analysis technique with the publication of Ivar
Jacobson's (1991) book “ Object-oriented software engineering: ause case driven approach” . Jacobson
has continued to promote this approach to system analysis to the present day, and it has now been
formalised as part of the UML. However, use case modeling is not very different in its purpose and
strategy from earlier techniques, such as structured viewpoint analysis.

Use case modeling in the UML specification

The Unified Modeling Language (UML) represents a deliberate attempt to standardise the modeling
notation used in software engineering, particularly object-oriented development. The widespread
uptake of the UML isaresult largely of two factors. First, it is driven by some of the most influential
proponents of object-oriented development, including James Rumbaugh, Grady Booch, and Ivar
Jacobson. Second, it has broad support from major business concerns in the software industry,
including Microsoft, IBM, Hewlett-Packard and Oracle.

The notation specified for use case modeling by the UML is not very different from that originally
proposed by Jacobson, so early books and articles on use case modeling that follow the Jacobson
strategy are till useful reading.

It isonly fair to point out that not all experts support the UML effort, and it comes under regular and
harsh criticism, some of it fair. For example, one criticism isthat there is not good enough integration
between the different components of the UML (e.g., between use case and class modeling). No doubt
thiswill improveintime. In due course you will be ableto make your own judgement on thisissue, but

41

Reguirements Engineering

isimportant to keep sight of the fact that the UML isan international standard for software modeling,
and any software professional needs to understand it.

The UML is under continuous development, and at the time of writing the latest version is 2.2. The
definitive reference for the UML notation is the UML specification, which is available from the
Object Management Group's Web site [http://www.omg.org/technol ogy/documents/formal/uml.htm].
However, while this is an authoritative document about the UML, it is not a good document from
which to learn about the UML.

It is important to understand that the UML is a specification for a modeling language. It is most
emphatically not a software design methodology. Although the UML states the symbolsthat areto be
used in use case modeling, and how they are to be interpreted, it does not say when, or even if, use
case modeling should be applied. We shall have more to say about this later.

Use case modeling symbols

This section presents an overview of the symbols used in use case modeling; the important ones will
all be discussed in detail later.

Symbol Name I nterpretation

Actor An entity (human or otherwise)
external tothe system, and which
interacts with it

Name
or
«actor»
Name
Use case A service or unit of functionality
or
«use-case»
Name
System boundary Indicates the division between

Name the system being designed and

the rest of the world

Communication association The line indicaes that a
particular use case is associated
An Actor with aparticular actor. The name

is optional and often omitted.
An arrow can aso optionaly be
used; where present it does not
indicate a flow of information
(such asin a data flow diagram)

Use case association Indicates that to use cases are
A Use Case |—————====m=m=m—m Another Use Case . .
Name related in a particular way, e.g.,

42

http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

Reguirements Engineering

Actors

mbol Name Interpretation

p
the one use case's behaviour
includes the behaviour of
another use case

«name» Stereotype Indicates that the symbol it
is attached to belongs to a
particular category

«name» Generaisation Indicates that the two symbols
Name ' it connects are related by
a generalisation-specialisation
relationship. For example, one
actor is a sub-type of another, or
one use caseis atype of another.

Both the name and the stereotype

areoption
A Note The designer may, and should,
Note qualify any part of the model
with atextual noteif it improves
‘ the clarity of the design

Note

The above images were created using the Umbrello Software package [http://
uml.sourceforge.net].

An actor isany entity, human or otherwise, that is external to the system being designed. Two symbols
are availablein the UML specification:

Figure 3.1. Actor representations

Name
An actor can be represented by a stick figure.

«actor»
Name

Alternatively, an actor may be represented by a class with the «actor» stereotype.

The “stick figure” symboal is the more expressive, but can lead to confusion if the actor is not in fact
a human but a machine. The rectangle symbol is the standard UML symbol for a class. What this
symbol saysis that the entity is a class that is a member of the category “use case”. The reason why
an actor is atype of class will be discussed later. Because of its greater expressive power (that is, an
ability to make amoreimmediate impression on the viewer) it is probably best to use the stick person
figure where possible.

Since use cases aretechnically classes, and by convention class names start with acapital letter, names
of use cases should also begin with a capital letter. The UML specification does not insist on this, but
it is common practice.

Two interesting philosophical issues are associated with actors. First, should the actor be a person,
or the part of the computer with which they interact? For example would we ever want an actor
called “Keyboard” or “Printer”? In designing aword processor, for instance, there is only one human

43

http://uml.sourceforge.net
http://uml.sourceforge.net
http://uml.sourceforge.net

Reguirements Engineering

user and they fulfil al the roles within the system. But you may wish to distinguish between, say
keyboard, mouse, and printer actions. However, distinguishing between different pieces of hardware
is probably inappropriate at thislevel, and it could be argued anyway that use case modelling isnot a
helpful way to begin the design of aword processor. On the other hand, a supermarket stock control
system may accept input from abar-code scanner at the checkout, when the cashier registersthe prices
of the customer's purchases. Is the actor here the cashier, or the bar-code scanner? Perhaps neither
is appropriate, as the cashier can probably enter the identities of products manually if the bar-code
scanner does not work. Do we want to distinguish between different techniques for entering item
details at the highest level of analysis? Probably not. In this case we could perhaps invent a more
abstract actor (called, perhaps, “point-of-sale”) that provides the key message: that something at the
point-of-sal e interacts with the system whenever apurchaseis made. In summary, then, when ahuman
being interacts with a computer system, it is not necessarily the case that the human is identified as
the actor. It is often clearer to use a non-specific entity as the actor.

The second philosophical issue is concerned with whether an actor has to be an active participant in
an interaction. For example, in a computer-based building security system, do we want “Burglar” as
an actor? A burglar does not actively interact with the system; indeed they would probably rather not
interact with it at all. Moreover, aburglar may interact with the system in anumber of different ways,
all passively. In this case, it may well be better to identify the sensor devices as actors. What about
the fire dlarm? Presumably “Fire Detector” is a better actor than “Fire’?

The UML gives us no guidance on these issues; although the letter of the UML specification is that
actors can be any external entity, the spirit of the standard seems to be that actors are people who
interact with the system in arich, complex way. Thereislittle concern for “trivial” actorslike printers
and fire detectors.

These complications notwithstanding, actors do not have to be human beings; they may be external
computer systems. For example, we may be designing a system for allocating staff work timetables
that draws information from a central record of employeeswhich is part of the payroll system. In this
case, “Payroll System” would be an actor.

Y ou should bear in mind that you will never implement an actor; by definition an actor is external to
your system. Y ou will, however, implement the interfaces used by actors to interact with the system.

Actors as roles

A decision that the use case modeller has to make is whether to treat (human) actors as expressions of
aperson, or as expressions of arole within an organisation. Perhaps an example will help to clarify
this issue. Suppose that you are designing a computer system to automate the operations of a large
library. The system should maintain the library catalogue, provide information to staff and readers,
check books in and out, provide guidance on re-shelving returned books, manage inter-library loans,
warh users about overdue books, and manage collection of fines and subscriptions.

M ost peopl e faced with this problem begin by considering the types of peoplewho will use the system.
Two such groups come to mind immediately: library users and library staff. In alibrary onewill often
find that staff members have very general job descriptions, and will take ahand in most of the normal
operations of the library. We will refer to these people as “librarians’. So far our use case model
has two actors: Librarian and User, and these two actors interact with all the use cases that we could
identify. In this case we are treating “Librarian” as an expression of a person. We could get a lot of
information about what services the computer system should provide by reading the job description
of alibrarian.

The problem with this approach is that it has no high-level structure, and is therefore not very
expressive. We could convey much the sameinformation asthe use case model by merely writing alist
of library services. Thereisno scopefor simplification and management of the model by generalisation
(seelater). Furthermore, it carriesthe implication that librarians are interchangeable, and any librarian
can do thework of any other. Evenif thisistrue at the time the system is designed, it may not continue
to be true. For example, more junior staff members may not have authority within the system to order

Reguirements Engineering

new books for the library. A person managing the stock of books is interacting with the systemin a
totally different way to the person who is, for example, signing up new library users. The fact that
theseto job functions may perhaps be carried out by the same physical human being isirrelevant; they
aretotally different roles within the system, and should be considered to be different actors.

Of course, we could now go to the opposite extreme and create anew actor for every servicethe system
provides, but this leap from the frying pan into the fire would still result in amodel with no structure
that is difficult to simplify. In addition, there may be a loss of expressiveness. For example, in the
library system it is quite likely that both staff and users can browse the catal ogue of books. They will
quite possibly do thisin anidentical way, and see exactly the sameinformation. Moreover, thisactivity
iscompletely separate from any other functionality the system may provide. So we may be tempted to
create anew actor (perhaps called “ Catal ogue Browser”) to model this role within the system. But we
will havelost avery important piece of information by doing this: the fact that both staff and users can
browse the catalogue implies that we have to put computer terminals or workstations on both sides
of the counter, so to speak.

So what isthe correct approach? In short it isthe one which leads to the simplest correct model which
is still adequately expressive. Of course it is more important that the model is correct than that it is
simple. To arrive at this point may require that your choice of actors be modified several times during
the course of construction of the use case model.

Identifying actors

In the last section we considered the distinction between actors as people and actors as roles, and
clearly thisisan issue that needs to be taken seriously by the requirements engineer. However, it only
becomes an issue when we know enough about the way the system isto be used to have a potential set
of actorsto hand. We now have to consider the situation where the analyst knows nothing at all about
the system to be developed, and doesn't have the first idea what the actors are. Many development
jobs begin like this.

The analyst's first recourse is to the stakeholders identified through the earlier requirements
engineering steps. The stakeholders should certainly be on theinitial list of actors.

Y ou may then ask what information is to be manipulated by the system, and where that information
will come from. All information that is not present in the system at the instant it begins work will be
coming from an actor of some sort. If there is not enough information to do this, then thisisa sign
that further information must be elicited from the customers.

Other potential actors include all the computer systems with which the system will interact, and any
other hardware devices (including hardware such as printers, bar-code readers, and so on).

There are also various “standard actors’ that all systems of any complexity are going to need, and
which may not have been considered by the clients. These include the person (or rather therole) which
maintains the system after it has been put into service, the person who performs software upgrades
and tests, the person who carries out and checks backups (if not automatic), and so on.

When devel oping a software system to replace amanual procedure, or an older software system, actors
may be identified by watching people go about their daily work, and by speaking to people who are
experts on the business the system hasto carry out.

It is probably not possibleto identify actors without some consideration of the services that the system

provides. In practice design work will switch between consideration of the actors and consideration
of the use cases.

Individual actors and classes of actors

All of the forgoing was, we hope, largely common sense. Now it is time discuss a technicality. We
will state the principle, and then go on to explain it.

45

Reguirements Engineering

The principle is this: the UML specifies that an actor in a use case is a class, and individuals are
instances of that class.

The actors in a use case model do not represent individuals (individual humans or individual
computers), but classes of individuals. For example, an actor called “Customer” models all those
propertiesthat customers havein common; it is, in effect, the class of al customers. It will be assumed
by anybody who reads your model that the ways in which the Customer actor interacts with your
system will apply to al customers. So if some customer or group of customers is expected to behave
differently, then we need a different actor to handle this case.

This may seem trivially obvious, but the complication is that the above principle is true even if there
isonly oneinstance of an actor. For example, a company may have only one managing director, and
may be constrained by law only to have one, but if the managing director interacts with the system you
are designing in a specific way, then they are a class, not an individual. The problem is that although
the designer understandsintellectually that actors are classes, they may still have a specific individual
in mind, leading to abad model. The reason is this: suppose Joe Bloggs is a bank clerk; there can be
different types of bank clerk, but it is meaningless to talk of different types of Joe Bloggs. And the
ability to simplify a model by identifying where one thing is a type of another thing is a key feature
of use case modeling, and indeed of all types of object-oriented design.

System boundary

The system boundary demarcates the system being designed from the rest of the world. It is denoted
simply by a box with the name of the system in the corner.

Figure 3.2. The system boundary

Name

Use cases are inside the box, actors are outside. Because different symbols appear inside the box and
outside, in practiceit isusually unnecessary to show the system boundary explicitly. One circumstance
inwhich itis necessary to show it isif you wish to show the use case models of two or more different
systems on the same diagram. This may be necessary if you are designing a system which interacts
with another in away that istoo complex for you to show the external system as simply an actor.

Some modeling software will draw the system boundary automatically.

In the design of alarge, complex system, it is said that the boundary may “move” during the design
operation. In fact what is happening is that decisions are being made about what functionality is the
responsibility of the current design exercise, and what is not. For example, it may turn out that during
the analysis of a staff payroll system, management of staff health records — which was previously
the responsibility of another system — is seen to be more appropriately part of the payroll system. In
effect, the system boundary has “moved” to encompass part of another system. Needless to say, such
movement needs to be settled as early in the development process as possible.

Use cases

Inthe UML, ause case can be represented in two different ways:

46

Reguirements Engineering

Figure 3.3. Representations of use cases

Use cases may be represented by atitle within an ellipse.

«use-case»
Name

Use cases may be represented by a class with the «use case» stereotype.

Most designers will immediately recognise the oval as a use case (the oval symbol has no other
meaning in the UML) so this symbol isto be preferred where available. The other symbol reflects the
fact use cases are technically classes (just as actors are), whose category is“ use case”. We will discuss
later what is meant by aclass of use cases.

Although use cases are central to use case modeling — and indeed to many object-oriented
development strategies — there is surprisingly little general agreement on what a use caseis. In fact,
there are peopl e currently working on doctoral theses whose subject is what a use case is supposed to
be showing. The following definition is taken from version 0.8 of the UML specification:

A use caseisageneric description of an entire transaction involving several objects.
—UML 0.8

This rather terse definition was all the UML had to say about the nature of use cases at that point. In
version 1.3, thereis the following, somewhat expanded, definition:

The purpose of a use case is to define a piece of behaviour of an entity without
revealing theinternal structure of theentity. Theentity specifiedinthisway may bea
system or any model element that contains behaviour, like asubsystem or aclass, in
amodel of asystem. Each use case specifiesaservice the entity providestoitsusers,
i.e. aspecific way of using the entity. The service, which isinitiated by a user, isa
complete sequence. Thisimpliesthat after its performance the entity will in general
be in a state in which the sequence can be initiated again. A use case describes the
interactions between the users and the entity as well as the responses performed
by the entity, as these responses are perceived from the outside of the entity . A
use case also includes possible variants of this sequence, e.g. alternative sequences,
exceptional behaviour, error handling etc. The complete set of use cases specifies
all different ways to use the entity, i.e. al behaviour of the entity is expressed by
its use cases.

—UML 1.3

Versions 2.2 states:

A use case is the specification of a set of actions performed by a system, which
yields an observable result that is, typically, of value for one or more actors or other
stakeholders of the system.

—UML 2.2

In fact, these are very general descriptions, and not particularly helpful to the practitioner; here are
some more pragmatic views of the use case.

Use cases as services

Inthisview, each use case providesaparticular serviceto the users of the system. Examples of services
may include withdrawing money from an account, printing a report, reserving a theatre ticket, and
ordering a book. Every time an actor interacts with a use case a transaction occurs; this transaction
takes time and may have a number of alternative paths.

47

Reguirements Engineering

Use cases as business processes

This view of use cases seemsto be favoured by people with an interest in business process modeling.
Inthisview, ause caseisan activity of the business, such as ordering stock, issuing a check to clear an
account, or checking a customer's credit-worthiness. Superficially thisview is not that different from
the view of use cases as services, but the implication here is that use cases are best characterised by a
discrete series of actions, perhapsillustrated by aflowchart (the UML equivalent of aflowchart isan
activity diagram; expanding use cases into activity diagramsis quite common practice).

Use cases as increments of functionality

Inthisview, adding a use case to the system is equivalent to adding some extra functionality, with the
proviso that the new functionality be largely self-contained.

These views are not mutually exclusive, and all are compatible with the UML definition. However,
the view that the designer adopts will subtly influence the character of the model produced.

Whichever view of you take of use cases, it isimportant to remember that a use case is a thing, not
an event or aprocess. It isnot uncommon for novices to generate use cases with names like “print” or
“mouse moved”. “Print” isaprocess or action. It may beavalid use case, if you mean by “print”, “the
facility to allow auser to obtain a printed output”. Some experts recommend that you force the names
of use casesto be nounsto reinforce thismeaning. In thiscase“ Print Service” or “ Print Facility” might
be better names. “moused moved” is an event, a thing that happensto the system.

Relationships between use cases

Itis possible, and usual, to show that one use case isrelated to another. The standard notation for this
isadashed line:

Figure 3.4. Use case association

A Use Case |————————————-> Another Use Case
Name

An association between use cases is typically shown with adotted line.

A stereotype can aso, optionally, be given to the relationship. This indicates the type of relationship,
of which the most important are «include» and «extend». An example of an «include» relationship
is show below.

Figure 3.5. Use of stereotypesin use caserelationships

Ordering Service

«include»

Credit Ordering Service

In this example, “ Credit Ordering Service” includes “Ordering Service”, that is, all the behaviour of
“Ordering Service” will be invoked whenever “Credit Ordering Service” isinvoked. Thisis sensible
if ordering something on credit is the same as ordering something with payment, plus a bit extra.

48

Reguirements Engineering

Typography

Stereotypesin the UML are enclosed in guillemets: « and ». Often, if the typist or application
is unable to represent these symbols, << and >> (two less-than or greater-than signs) are
used instead. However, now that Unicode display is available on most operating systems, the
guillemets are to be preferred. The Unicode code points for « is u+00AB, and » is u+00BB.
Your operating system will no doubt have an easier input method available to you than
entering Unicode code points directly.

In the UML, «extend» is similar to «include», with the distinction that with «extend» the behaviour
of the extending use case will not always be invoked.

A note on terminology and semantics

The UML uses the term «extend» here because Jacobson used this term in his earlier
work on use case modeling. Unfortunately, many authors use the term “extend” to mean a
generalisation relationship — in other words, that one thing isatype of another thing. Thisis
particularly relevant in Java programming, where the word “ extend” hasthis (generalisation)
sense, and not the sense defined in the UML. To further complicate matters, the «include»
relationship does denote a kind of generalisation: a “credit ordering service’ is a type of
“ordering service”. These complications have little impact on use case modeling or on
programming in practice, but they do cause confusion among students (and others), and it
is good to be aware of them.

Describing and specifying use cases

A use casediagram onitsown may well be auseful method for describing the large-scale structure of a
system; however, itisof very limited use astheinput to amore detailed design operation. In practiceit
is necessary to describe use cases in amore detailed fashion if the model isto be interpreted properly.

Such a description is not only an aid to communication, it is an aid to validation. Validation is the
process of ensuring that a specification is correct, in contrast to verification, which is the process of
ensuring the product meets its specification (see Chapter 9, Software Testing). If the analyst cannot
describe a use case in away that makes sense to someone el se, then one of two things has happened:

» Theanayst has made an error: the use case isnot valid and should be removed and its functionality
placed elsewhere;

e Theanalyst hasinsufficient information about the system being devel oped.
Either case needs to be corrected.
How do we describe use cases? Two approaches are in widespread use.

» Plaintext. Thisisthe approach recommended by the UML specification. Normally afew paragraphs
of text should be adequate. Most experts recommend that the text used should be in language terms
which the customer uses; that is, a system for controlling a steel mill should be written in the
language of a steel producer, not a software engineer, even though the latter may allow greater
technical accuracy. The reason for this is simple: only the clients can confirm that the use case
model is correct, and that they meet the requirements of their application. While the analyst can be
surethat themodel islogically consistent, and can beimplemented, thisis not good enough grounds
for proceeding with development.

» Using a sub-model. By this we mean using a further, more detailed model, to clarify the use case.
Ultimately, as we shall see, a use case will be expanded into a collaboration diagram, that is, an
interacting group of classes. However, this does not describe the use case in the sense meant above;
thiswill probably not help customersto determine whether the model represents asystem that meets
their needs. A common choice of a sub-model is the activity diagram. This diagram is a relative

49

Reguirements Engineering

newcomer to the UML, and is not very different from atraditional flowchart. It shows the sequence
of steps that are carried out when a use case/actor transaction occurs, and can show aternative
sequences of operations which are selected according to some condition of the system. The use of
activity diagramsis beyond the scope of this chapter, but should be explained in any UML textbook
and, of course, inthe UML specification.

Individual use cases and use case classes

Use cases are technically classes. Thus a use case does not represent a particular delivery of aservice,
or use of some functionality, but all conceivable deliveries of the service.

If ause caseisaclass, then theindividuals/ instances are the specific cases of a transaction occurring
between the use case and one or more actors.

If al interactions between the actor(s) and the use case are identical, then the distinction between the
use case class and its individual instances is not important to the analyst. It becomes important when
ause case can behave in many different ways, that is, theindividual instances of the use case class are
different. If these individuals are important enough to be documented, they are called scenarios.

For example, suppose we are developing a computer system that allows people to place credit-card
orders for our customers' products using a Web browser. We have identified a use case called “Place
Order”, which represents an ordering transaction between the customer and the system. This use case
has very complex behaviour, because there are many thingsthat can go wrong while placing the order.
For example, the credit card company may not authorise the funds transfer, the credit card number
may be invalid, the connection to the credit card company may be out of service, and so on. In all
cases the use case must exhibit behaviour that tries to recover from these errors. For example, if the
user enters an invalid card number, they must be given the opportunity to correct it and try again.

For the purpose of documenting the use case we may use a model like an activity diagram to show
the general behaviour, but support it by describing a number of possible complete transactions, where
different errors are encountered and corrected. These descriptions are the scenarios of the use case.
Including scenarios for complex use cases helps the analyst to be sure that the use case is properly
specified, because the clients will be able to understand the scenarios (which are in plain language),
and the analyst and their colleagues will be able to check that the scenarios are compatible with the
genera pattern of behaviour specified for the use case.

The concept of generalisation

Generalisation is one of the most important concepts in use case modeling, and indeed in object
orientation in general. When stated as a principle it appears trivialy obvious, but it has profound
implications. The principleisthis;

Generalisation

Entity A isageneralisation of entities B, C... if the behaviour, attributes and associations of
B, C...arefound in A, and no properties of A are absent from B, C...

We say that entities B, C, and so on, inherit the properties of A. This can also be stated as. A isa
generalisation of B and C if B and C are types of A (we could also say sub-types or sub-classes);
A isageneraisation of B and C if B and C extend the functionality of A, while retaining all of A's
functionality

Hereistrivia example: Dog and Cat are types of Mammal, because all dogs and cats share the basic
properties of mammals (e.g., having fur, being warm-blooded, having four limbs). We may say that
Mammal isageneralisation of Dog and Cat; alternatively we could say Dog and Cat are specialisations
of Mammal, or types of Mammal, or sub-classes of Mammal. Note that when we say that Mammal
isageneralisation of Dog and Cat we are not saying anything about whether there are other types of
Mammal; there may be, but we haven not specified any.

50

Reguirements Engineering

Another example: A business wishesto automate some of its sales procedures. Preliminary interviews
reveal that there are anumber of staff rolesin the Sales department. A salesperson can place orders on
behalf of customers and check the status of these orders. A technical salesperson has the same duties,
but additionally is able to provide customers with detailed technical advice (which we would not
expect an ordinary salesperson to be ableto do). A sales supervisor isasalesperson, with the additional
responsibility of creating new customer accounts and checking their credit-worthiness. It isreasonable
to assumethat Salesperson isa Generalisation of Technical Salesperson and Sales Supervisor, because
the technical salesperson and sales supervisor have al the properties of a salesperson, and some extra.

We can construct an outline use case model to show these relationships. We will assume for the sake
of simplicity that the use cases are “ Place Order”, “ Check Order”, “ Create Account”, “ Check Credit”,
and “Technical Advice”. Without generalisation, we obtain the following model:

Figure 3.6. A use case example, without generalisation

Place Order

Check Order \ SalesPerson

/N %
«extend» I \\
SalesSupervisor

Create Account

Technical Advice

TechnicalSalesPerson
Whilethisislogically correctinthat it accurately capturestheinformation giveninthetext, the number
of associations in the diagram makes it difficult to read. It provides no more insight into the system
than does the textual description.

In the UML, the symbol for a generalisation is an arrow:

Figure 3.7. Use case gener alisation

«name»

A Use Case Another Use Case

Name

51

Reguirements Engineering

The arrowhead pointsto the more general entity. If we take account of the generalisation rel ationships
present in the “ Sales” example, we reach amodel like this:

Figure 3.8. Use case example, with generalisation

Place Order

Check Order SalesPerson

9 00

«extend»

SalesSupervisor

Create Account

Technical Advice

TechnicalSalesPerson

This model does not have to show that “Technical Salesperson” and “Sales Supervisor” can check
orders and place orders, because this is implied by their being sub-classes (specialisations) of
“Salesperson”. Not only isthismodel easier to read, it gives amore immediate insight into the system
being analysed.

Y ou will not always be able to simplify a use case model using generalisation, but you should be on
the alert for the opportunity to.

In the example above, “ Salesperson” was an actor in its own right, aswell as being a generalisation of
other actors. That is, wewould haveidentified “ Salesperson” asan actor with or without generalisation.
Sometimes, however, it is appropriate to “invent” actors simply to stand as generalisations of other
actors, with the purpose of simplifying the model. These actors are referred to as “ abstract”, because
they abstract, or simplify, a system. An abstract actor is a special case of an abstract class. We shall
have more to say about abstract classes in the next unit.

A simple example

Thisisan exampleof acomplete, simpleuse casediagram. Itisbased onthe“ Sales” example presented
earlier. We will start with a description of the business, then present the use case diagram and the
textual specification of the individual use cases. Note that a use case model isincomplete without this
specification, either in plain text or something else.

52

Reguirements Engineering

A use case example

A retail business wishes to automate some of its sales procedures. The retailer buys items
in bulk from various manufacturers and re-sells them to the public at a profit. Preliminary
interviews reveal that there are number of staff rolesin the Sales department. A salesperson
can place orders on behalf of customers and check the status of these orders. A technical
salesperson has the same duties, but additionally is able to provide customers with detailed
technical advice (which we would not expect an ordinary salesperson to be able to do). A
sales supervisor is a salesperson, with the additional responsibility of creating new customer
accounts and checking their credit-worthiness. A dispatcher is responsible for collecting the
goods ordered from the warehouse and packing them for dispatch to the customer. To assist
in this operation, the computer system should be able to produce a list of unpacked orders
as well as delete the orders from the list that the dispatcher has packed. All staff are able
to find general details of the products stocked, including stock levels and locations in the
warehouse. A re-ordering clerk isresponsible for finding out which products are out of stock
in the warehouse, and placing orders for these products from the manufacturers. If these
products are required to satisfy an outstanding order, they are considered to be “priority”
products, and are ordered first. The system should be able to advise the re-order clerk of
which products are “priority” products. A stock clerk is responsible for placing items that
arrive from manufacturersin their correct placesin the warehouse. To do thisthe clerk needs
to be able to find the correct warehouse location for each product from the computer system.
Currently, the same person in the business plays the roles of stock clerks and re-order clerk.

Figure 3.9, “A full exampl€e’, shows the associated use case diagram.

Figure 3.9. A full example

% Check Stock
Despatch Service \—«

StaffMember

«include»

Place Order

Dispatcher ReOrderClerk StockClerk SalesPerson Check Order |<~——————~ Priority Reordering

T

i

«include»

Check Credit

I
«extend» | ;%

SalesSupervisor

o

Create Account

Technical Advice é 5

TechnicalSalesPerson

by

Brief use case specifications

» Check Stock: Allowsauser to check thelevels of stock of any item held in the warehouse,
and where that item is shelved. A particularly important scenario is that of obtaining alist
a stock items for which the stock level is zero, that is, of which there is no stock in the
warehouse.

» Place Order: A salesperson places an order on behalf of a client. This has the effect of
making information about the order available to Dispatch Service. The order remains on
the system until it has been packed and dispatched.

53

Reguirements Engineering

» Dispatch Service: Allows alist of outstanding orders to be obtained, and updated when
orders are packed. An order is not available to this serviceif it cannot be satisfied because
thereis not enough stock in the warehouse.

* Priority Reordering: Obtains alist of items that need to be re-ordered urgently, as the
business cannot satisfy its own orders without them. This use case makes use of Check
Stock (to determine if an item is out of stock) and Check Order (to determine what stock
isrequired to satisfy al current orders)

» Check Order: Obtains details about any outstanding orders, including what stock items
arerequired to satisfy the order. This use caseis used by salespeople to advise customers,
and by the Priority Reorder use case to determine which items of stock must be replaced
quickly.

» Check Credit: Used to find out whether it is safe to extend credit facilitiesto aclient. This
use case refers to external credit reference agencies (not shown).

» Create Account: Used to register anew customer. If acustomer asks for credit facilities,
this use case includes Check Credit. Otherwise it doesn't have to.

» Technical Advice: Provides technical specifications for selected products. Used by
technical sales staff to provide advice to customers.

Some hints and warnings
Here are afew general hints, and warnings, concerning use case modeling.

* Itwill usually be necessary to modify and refine a use case model; even an experienced analyst will
accept that the first attempt at such amodel is unlikely to be optimal.

A blank sheet of paper (or ablank computer screen) is not agood thing to be looking at when trying
to identify use cases or actors. It is better to start by putting down alarge number of potential use
cases and actors, and perhaps remove or merge some of them later. The early stages of use case
analysis can usefully be treated asa* brainstorming” procedure in which large numbers of ideas are
floated, only some of which later turn out to be useful.

» A use case should usualy provide a discrete, testable service to at least one actor. This makes it
possible to implement and test use cases independently. The UML (version 1.3) specification says,
“A pragmatic rule of use when defining use cases is that each use case should yield some kind of
observable result of valueto (at least) one of its actors’.

» Use case modeling is subject to the phenomenon known as “analysis paralysis’. Thisis atendency
to concentrate on one small part of amodel, adding increasing amounts of detail, while neglecting
the broader view. If you develop part of amodel to ahigh level of detail, perhaps over an extended
period of time, you will have an emotional disincentive to delete it later should it prove beneficial
to do so. Thistendsto bring the whole processto a halt, as the analyst struggles vainly to complete
amodel that is too incorrect to be amenable to completion. The correct procedure is to start with
a broad outline, and add detail later. For example, if you intend to document a use case with an
activity diagram or some other model, it is best to avoid doing this until most of the use cases and
actors are defined.

» When describing your use cases, however you chooseto doit, you may well find that the process of
description leads you to challenge your choice of use cases or actors. Y ou should take this challenge
seriously, and modify the model if necessary.

* You should consider using generalisation relationships to simplify a model, butsiit is usually best
to first identify most of the actors and use cases.

Reguirements Engineering

Review

Questions

Review Question 1
What is requirements engineering?
A discussion of this question can be found at the end of this chapter.
Review Question 2
Supply the seven steps that make up regquirements engineering and briefly describe them.
A discussion of this question can be found at the end of this chapter.
Review Question 3

What advice do you have to offer between the two different representations available for actorsin
ause case?

A discussion of this question can be found at the end of this chapter.

Review Question 4
Construct a use case model that shows the requirements of a computer system that will automate the
servicesof alargelending library. Assumethat the library has separate adult and child services, orders
its own books stocks, can obtain books from other libraries on request, has a catalogue on public
access, and charges fines for overdue returns. Try to envisage all the services and users of the library,

and capture them all in the diagram. Do not include services that don't relate to books (e.g., Internet
access).

A discussion of this question can be found at the end of this chapter.

Review Question 5

Can this use case model:

Figure 3.10. Without generalisation

=
o

S
A2

be simplified using generalisation into the model shown below?

55

Reguirements Engineering

Figure 3.11. With generalisation

o

Al

5 40—

What reasons are there for thinking one way or the other?

A discussion of this question can be found at the end of this chapter.

Review Question 6

Inareal-world design exercise, it can often be difficult to obtain the information needed to construct a
complete use-case model. Why? (Try to think of at least ten reasons, and possible ways the problems
can be overcome). It may help to refer to some general software-engineering books, like Sommerville
for information.

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

Requirements engineering is concerned with discovering what it is that should be devel oped. Its goal
isto develop the software's specification.

Discussion of Review Question 2

1. Inception, wherethe devel opers attempt to gain an understanding of the software and the problems
that it has to solve.

2. Elicitation attempts to propose solutions to the problems that the software has to solve.

3. Elaboration expands the information from the previous two stages into an analysis model.
4. Negotiation is used to resolve any conflicts between the stakeholdersin the project.

5. Specification involves producing the final specification from the previous steps.

6. Validation concerns itself with ensuring that the specification is of a high enough quality to be
useful.

7. Management controls and tracks changes made to the specification.
Discussion of Review Question 3
The users of a system can be divided into two general classes: human users and other computer

systems. Both of these are represented in use case diagrams. Representing human users using the
standard stick figure can be very hel pful, while representing other external computer systemsas objects

56

Reguirements Engineering

with the «actor» stereotype can help to make a useful distinction between people and automated
systems.

Discussion of Review Question 4

There is no single correct answer to this question. Y ou are encouraged to discuss your solution with
your tutor and/or your classmates.

Discussion of Review Question 5

If the actor A2 is genuinely a sub-type of A1, then the generalisation shown is logically correct.
However, it is not possible to infer whether a generalisation exists from what associations an entity
exhibits. Generalisation exists when one entity inherits all the properties of another, not just its
associations.

Discussion of Review Question 6

There are many reasons why use-cases can be difficult to construct, and many of these reasons are
related to requirements never being completely stable. Some examples to think about:

Use cases are written from the software's point of view, and not that of the actors. For instance, use
cases should always describe a user's goal, and not a function of the software.

How the software isinteracted with is poorly understood. This easily happens when the requirements
for the software are novel, or are themselves poorly understood.

Sakeholders disagree. If the clients wanting the software cannot agree on what they want from the
software, use-cases cannot be constructed.

57

Chapter 4. An Introduction to
Analysis and Design

Objectives

At the end of this chapter you should be able to:

* Describe the difference between analysis and design.
 Describe how analysis and design are related.

* Describe what a software model is.

* Provide examples of models used in software analysis and design.

Introduction

The previous chapters have hopefully shown you that unless software systems are well thought out
and developed using a systematic approach, they can easily become catastrophic failures. Software
process models have evolved to solve this, guiding the management of software projects. This chapter
discusses system analysis and system design, which are used during the generic framework activities
of communication and modelling (although they may be found in the others). Analysis and design
helps us to understand the problem domain the software must solve, as well as the software itself.

System analysis

The previous chapter — Chapter 3, Requirements Engineering — discussed requirements engineering,
which is concerned with what the software is required to do. Analysisis atool to help with this: the
analyst must determine — from the problem descriptions and incomplete and informal requirements
— what it is that the software should do. This is can be an exciting and often challenging task, and
focuses on describing what the problem is, rather than on how it will be solved.

In many cases, anaysts build models of the existing system to help software engineers understand
how the customers requesting the software are currently dealing with the problem the software should
solve.

Theresult of the analysisis asystem specification, adetailed, logical description of either the existing
system, or of the new system. For the new system, this specification must satisfy the software
requirements. This description must aim to fill in any gaps or ambiguities and make explicit any
assumptions in the requirements.

System design

The software / system designer uses the system's specification as a starting point to determine how the
system should achieve its requirements. Once a particular solution has been adopted, the specification
is expanded and modified to clarify what must still be defined in order to be able to achieve the
requirements.

The product of this activity isacomplete, detailed software design.

The relation between analysis and design

Analysis and design are related activities. As such they may be thought of as two parts of the single
process of converting requirementsinto a clear, complete and coherent software system. Thus, many

58

An Introduction to
Analysisand Design

of the special techniques (and computer-based tools) used during analysis carry through into design.
It isfor this reason that the two activities are studied together.

The following chapters of this module introduce several techniques needed for software analysis and
design. These are embodied in the idea of models.

Introduction to models

The mgjor artifacts of software analysis and design are models, amodel being arepresentation of one
or more aspects of the system.

Themost obvious example of such amodel isamap. It represents ageographical |ocation and includes
important roads, buildings and railway lines. A map does not include all detail for that location — the
amount of given detail depends on the scale of amap. A map of Great Britain, for example, isunlikely
to show every street in the country. A town map, on the other hand, deliberately shows all streets and
street names, but does not show the location of al trees, plants and animalsin that town.

Other examples include an architect's drawings for a building; awiring diagram for a micro-chip; the
sheet music representing a score of classical music composition. Models represent important features
of the thing they model, and can be used to understand and re-create the object being modelled, the
building or chip or music itself.

Models simplify what they model to alevel of detail appropriate for its readers to understand. A road
map represents enough information for a person to navigate (by car) between points on the map. The
trees and plants are left out of the map because that sort of detail is inappropriate and unnecessary
when navigating along streets.

This raises an important point. The model used should be appropriate to the problem. Or, rather,
different models should be used for different things. A road map is good when travelling by car, but
is less useful when walking in the country-side, where information about footpaths, field boundaries
and contoursis needed. Similarly, a micro-chip wiring diagram does not have the detail necessary to
build a whole computer with disk-drives, monitors and stereo sound. A different model is needed to
build a computer.

In addition to this, a person may need training before they can understand the model. Maps are
reasonably clear, but even then not everyone can use them. Much specialist training is needed to

understand an architect's designs; similarly, training is needed to understand the models of different
aspects of a software system.

These examples serve to point the way in which we approach models for analysis and design. The
main points are;

» Models are asimplified representation of a system
« Different models are used to represent different aspects of a system
* You need to learn how to understand, construct and use each particular kind of model

The method used to produce a model is called a modelling technique. Software which assists us to
employ amodelling techniqueis called a modelling tool.

Definition of the term “model”

Two definitions of “model” from various software engineers are:

A model is a qualitative or quantitative representation of a process or endeavour
that shows the effects of those factors which are significant for the purposes being
considered.

59

An Introduction to
Analysisand Design

— H. Chestnut, “ Systems Engineering Tools’, Publisher: John Wiley, New Y ork,
1965

A model isthe explicit interpretation of ones understanding of asituation, or merely
of ones ideas about that situation. It can be expressed in mathematics, symbols or
words, but it is essentially a description of entities and the relationships between

them. It may be prescriptive or illustrative, but above all it must be useful.
— Brian Wilson, “ System: Concepts, M ethodologies and Applications’, p.8,
Publisher: John Wiley, New Y ork, 1984

The properties of models

Before we can decide on what sort of models to use as an aid to software engineering, we should first
determine what it is that we want the model to do for us.

The requirements for any given software system can be immensely complicated. In order to manage
this complexity the system needs to be subdivided into parts, and we need to focus on the requirements
for each of these parts. Having modelled a part of the system, the customer needs to confirm that the
model captures what it is that they want developed. Thus the aim of this whole process is to produce
a complete model of the system understandable by designers and programmers, and, where possible,
the customer aswell.

Many iterative and incremental process models begin development on only a portion of the software's
final requirements, and perform analysis and design on this limited functionality. This software
product will then be shown to the customer, who will then request changes (if any) before devel opment
on the next software increment begins. This next iteration of work will include further requirements
engineering, analysis and design.

So a good modelling technique should help in the following ways:

* it considers only part of the system, focusing on particular aspects of the system

it helpsto organise the analyst's ideas

« the customer is able to understand the model, and is able to provide feedback on it
» omissions and errors should be easy to identify

* designers and programmers can produce the system from the models

Since asingle model only represents part of the system, it is clear that we will need several modelsto
help analyse and design a compl ete system. Given this, there are certain features which models must
have in common in order to meet the above objectives.

Model properties: maintainability and disposability

In the course of developing a system, the analyst's understanding of the system will changein light of
the analysisthey do. The sameisprobably true of the customer. So in the course of analysing asystem,
the analyst will often make severa versions of each type of model — either building upon earlier ones
or even throwing old ones away and starting again. It makes sense then to have models which are
reasonably cheap and can be developed and maintained without too much cost and time overhead.

For this reason the models often take the form of diagrams, pictures and text which can be printed
on paper or drawn on a white-board. This makes them very cheap! Occasionally, more sophisticated
models are used, such as software prototypes in the prototyping life-cycle model.

The models used should also be easy to change. Re-writing or re-drawing models by hand is tedious,
and CASE software tools (Computer Aided Software Engineering tools, see Chapter 2, Process and

60

An Introduction to
Analysisand Design

Model) can be used to relieve the burden of producing models. M ore fundamentally though, the models
themselves should be such that adding or removing detail does not have many repercussions on other,
distant parts of the model. In most cases this means that the model should not represent the same piece
of information in two different places. This property of reducing multiple representations of the same
thing is called minimal redundancy. The property of changes to part of a model having minimal
repercussions on other parts is called low viscosity or robustness to changes. A good model will
usually have both minimal redundancy and be robust to changes.

Model properties: graphics and text

Having decided to produce models on paper, we have the choice between graphical representations
of the system or textual descriptions.

It is possible to describe a system entirely in words. There are some problems with this, the biggest
being that for a large system, a huge number of words will be needed. A developer trying to find
technical descriptions and design decisions would be lost in a maze of words. It would also require a
huge time investment for the customer to check over such adocument. Thisis clearly not practical.

Instead, for many modelling techniques, graphics make up the largest part of the model. A diagram,
by using good notation, can represent a large amount of information in a form that is easy to grasp
and, more usefully, can be put on a single sheet of paper.

So what characterises good notation? Some suggestions would be that each object in the diagram
means something so that there is not much unnecessary clutter caused by objects with little or no
meaning. Also, the objects themselves should have well-defined features so that there is little or no
ambiguity. Different types of features of a system should be represented by different symbols, so that
itisimmediately clear what the parts of the diagram mean.

Using graphics does not mean that no text isused at al. In some places text is the best thing to use;
indeed, graphics and text can play a supporting role for each other, clarifying or explaining portions
which the other would be too tedious to use (such as with use case diagrams, described in Chapter 3,
Requirements Engineering).

Model properties: comprehension

As discussed at the beginning of this section, the models need to be understood by many people: the
customers, the developers, as well as the analysts and designers themselves. If it takes a long time
to explain what the models mean, then much unnecessary time will be waisted. Good models should
be clear and smple.

The ideal is for models to be well drawn and easy to understand — no explanation of them should
be necessary at all. As arule, a model drawn by an analyst which the analyst themself finds both
complicated and unclear will be difficult to understand by others.

The main models of traditional analysis and
design

Having discussed both what model s are and what we expect of them, wewill now introduce the models
that you will be studying in the following chapters. This section is meant as an overview, so do not
worry if you do not understand something. Y ou will be introduced to each type of model in far more
detail in one of the next units.

There are three key aspects which need to be considered when attempting to understand a software
system:

* the data needed in the system,

61

An Introduction to
Analysisand Design

* the processes or functions which the system performs
» what events occur and what changes are made over time

It isuseful, therefore, to have a different modelling techniques to focus on each of these areas. Three
corresponding modelling techniques are:

» Classmodels
» Data-flow diagrams
* Sequence diagrams

Each of these modelling techniques is a diagram-based technique with accompanying text (either on
the diagram, or to supplement the diagram).

The example models presented in the following three sections have been constructed for a particular

software system example. The example system isthat of an estate agent that organises the buying and
selling of houses. Each of the diagrams will represent a different aspect of this system.

Class model

A classmodel isused to represent the data structure of asystem. In other words, the focus of thismodel
isthe data needed in the system. The data is represented as classes and rel ationships between classes.

An example class model is givenin Figure 4.1, “ An example class model of an estate agency”.

Figure4.1. An example classmodel of an estate agency

Client Potential Buyer
+receives [1 1 + | +considers
+ offers
+owned by * |+is matched with
Property
+for | *
*
Invoices * | +is bought by
1 [Buyer
+buys

Although no details about class models have been given, it should aready be possible for you
to understand parts of the diagram — for example, that boxes correspond to classes such as
“Client” and “Property”, and the lines represent relationships between them. Class models are avery
important modelling technique, since the data and relationships of a system are least likely to change
significantly. These diagrams are often constructed early on, and the other models built up from them.

Data-flow diagram

Data-flow diagrams (DFD) represent the processes or functions which the system performs, and how
data flows between processes and in and out of the system. See Figure 4.2, “An example of a data-
flow diagram”.

62

An Introduction to
Analysisand Design

Figure4.2. An example of a data-flow diagram

P
Collate
I food
5] Collated Food requirements~]
le——"" Reguirements
——— Cirder
Supgly Order Supplies [Weekly fc"-‘?
—— rEqurEments
g | T
/ |
yw query |' C1 |Food Detail
|
|
Hew prders
Query Response { - N
| = Payment -
| o Make ayment —
| . — Payments 1y \\‘
, ___—Recsived orders ¥ S ____-——-""-\\ Supplier /
\ Y Inwoice — I
Y | 4 R
Deliyery | T \ |
Y e Y
\ II| ~ \
A Supplier
~ AT |
L I Maiched orders Dsure’_-ancy |
I Resolved omlers =sgonse -
Mew orders . Discrepancy
. | T | Query
Receive . |
Delivery e | S |
Checked | K““‘-‘H
defwery = _[a | - I|'
e |
Check A
_. ————— Unmatched —
dise or orders Cluery
iscrepancies] discrepancy
D1 is maintained as part of the same system by the kespers D3 needs to be maintained in some sensible fashion

tcould be replaced by the keepers as an external entity.
Keepers could then receive goods defvered from 3.

Data-flow diagrams represent a somewhat more complicated modelling technique than class models.
The named boxes are processes representing actions; the named arrows represent datamoving between
the processes. Some boxes represent data stores where data flows either to or from. The bubbles are
external entities that provide data to the system and receive the output data.

This single diagram does not demonstrate an important feature of data-flow diagrams — their
hierarchical organisation. Complex processes (such as “2 Order Supplies’) can be iteratively broken
into separate processes until the entire system has been described in full detail. Do not worry about the
complexities of data-flow diagrams, you will learn the details of this technique in Chapter 6, Data-
Flow Diagrams.

Sequence diagrams

A sequence diagram shows how instances of various classes (taken from, say, a class model) interact
with each other over time.

The diagram should be read from top to bottom, which is the direction in which time progresses. The
boxes represent not classes, but objects (which is notated using the colonsin front of the class names).

Figure 4.3. An example of a sequence diagram

: Buyer : Property . Client
I I
. purchase I I
] I
v I
I

. changeOwnership

A 4

63

An Introduction to
Analysisand Design

Useful points

All three models represent the same system, albeit different aspects of that system. Thisisin the same
way that a drawing of a human skeleton (a“bone” model) and a model of human musculature differ
from one another, but still both represent the human body.

Class diagrams, data-flow diagrams, and sequence diagrams, must relate to each other and be
consistent with one another. Though they represent different things, there is a correlation between
the various parts of the different diagrams. If these parts do not match up when the diagrams have
been completed then it is a sign that either something has been omitted from (at least) one of the
diagrams, or that they are not correct. You will learn about the relationships between the different
kinds of diagramsin later chapters.

With regards to producing these diagrams for a particular software system, remember that thereis no
“correct” version of these models. Two different systems analysts may look at the same system and
produce two different models. This is ailmost to be expected, since people approach the analysis of a
software system from their own previous experience and, in some sense, their individual perspective
gets built into the system.

Just because there is no “correct” model does not mean that all models are equally valid or equally
useful. In most casesit takes many attemptsto produce a“good”’ model. The first things written down
when developing a model merely act as somewhere to start. As the model is built up the analyst's
knowledge of the system increases and they may realise that some details have been omitted or that the
original structureis unsuitable or unfeasible. Analysts must be prepared to insert new details, re-draw
existing parts of the diagram and even, on occasion, throw away the current model and begin anew.

On modelling notation and software

Class and sequence diagramswill be drawn using the UML. The above diagramswere drawn
using the Umbrello software package [http://uml.sourceforge.net], although other packages
exist. Y ou may want to explore:

 Dia [http://diarinstaller.sourceforge.net]
* ArgoUML [http://argouml.tigris.org]

The SSADM notation is used for data-flow diagrams (since thisis not a part of the UML).
The freely available Dia package provides support for data-flow diagrams.

The benefits of using formal models

Using models in the software engineering process provides the following benefits:

» Models provides a pictorial, representation of the system, thereby providing the basis for good
communication between software engineers and our customers. They are easy to draw and update,
aswell as being easy to check.

» Any individual model manages complexity through abstraction, by concentrating on one aspect of
the system, leaving other aspects of the system to be modeled separately.

» Modelsimpose structure on theinformation, providing aclear and concise representation that makes
the information and its interrel ationships easier to understand.

 The techniques by which models are constructed assist in highlighting areas where analysis may
be incompl ete.

Case studies

A case study is a short text description of an imaginary software system. It is often written in an
informal manner and may contain ambiguities. Assuch, it resemblesinformation that may be gathered

http://uml.sourceforge.net
http://uml.sourceforge.net
http://dia-installer.sourceforge.net
http://dia-installer.sourceforge.net
http://argouml.tigris.org
http://argouml.tigris.org

An Introduction to
Analysisand Design

during requirements engineering. The following “Estate Agency case study” isthe case study used to
produce the examples for the above diagrams.

Estate Agency case study

Clientswishing to put their property onthe market visit the estate agent, who will take details
of their house, flat or bungalow and enter them on acard which isfiled according to the area,
price range and type of property.

Potential buyerscompleteasimilar type of card whichisfiled by buyer nameinan A4 binder.

Weekly, the estate agent matches the potential buyer's requirements with the available
properties and sends them the details of selected properties.

When asale is completed, the buyer confirms that the contracts have been exchanged, client
details are removed from the property file, and an invoice is sent to the client. The client
receives the top copy of athree part set, with the other two copies being filed.

On receipt of the payment the invoice copies are stamped and archived. Invoices are checked
on amonthly basisand for those accounts not settled within two months areminder (the third
copy of theinvoice) is sent to the client.

Review

Questions

Review Question 1
Contrast analysis and design. How are they similar, how do they differ?

A discussion of this question can be found at the end of this chapter.

Review Question 2
What role do models play in analysis and design?

A discussion of this question can be found at the end of this chapter.

Review Question 3
Briefly outline the various properties of a model.

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

Analysisand design are related activities, concerned with (respectively) what the problemis, and how
it will be resolved. Because of this relationship, many of the modelling techniques used in analysis
are themselves used in design, and vice versa.

One large difference between them is that analysis does not consider any implementation details: it
is merely concerned with description of existing problems. Analysis produces a specification of the
existing problem or the existing solution to the problem.

Design itself can begin as a description of a solution to the problem, but will progress into
implementation details. It also produces a specification, but this specifies the solution to the problem.

65

An Introduction to
Analysisand Design

Discussion of Review Question 2
Models provide one of the primary means of communication of information during software
engineering, especially during the activities of analysis and design. They allow us to simplify the
information we wish to convey, and thus can highlight specific portions of the software system, such

asthe static datadesign (classmodel), user interactions (use-case diagrams) and the flow of data (data-
flow diagrams). They are atool for abstraction (see Chapter 7, Design).

Discussion of Review Question 3
Models have the following properties:
« they consider only part of the system, focusing on particular aspects of the system
« they help to organise the analyst's ideas

if the customer is able to understand the model, and is able to provide feedback on it

» omissions and errors should be easy to identify

* designers and programmers can produce the system from the models

66

Chapter 5. Object-oriented Analysis
and Design

Objectives

At the end of this chapter you should be able to:
 Create class models of systemsthat can be encapsulated in one diagram.
» Simplify amodel using generalisation and abstract classes.

* Describe how a more complex model can be specified, and how modelling software maintains
design integrity in such a complex system.

» Read and describe class models created by other designers.
» Beabletorelate class diagramsto equivalent program outlines.
» Specify an object model using CRC cards.

« Describe how objects change over time.

Introduction

This chapter discusses object-oriented modelling methods, that is, the representation of a software
systemintermsof classesand their inter-rel ationships. Class modelling isthe most fundamental aspect
of object-oriented analysis and design, and its mastery is crucial for anyone who intends to use object-
oriented techniques. Class modelling is useful to both the analysis and design disciplines: in analysis,
classesand therel ationshi ps between them will specify the problem. Indesign, it specifiesthe software.

Class modelling is philosophically complex, but practically straightforward. However, it rests on a
few important philosophical concepts, and it isvital that these concepts are mastered before doing any
practical work. When studentsfail to make progresswith real design exercises, it iscommonly because
they have not developed a proper understanding of the basic principles. These principles cannot be
learned by rote, they must be understood through exercise and application.

Class modelling is used throughout object-oriented development, from analysis through to
implementation and testing. The class model is the “skeleton” on which the “flesh” of program code
is constructed. During the devel opment of a system the class model is modified and refined, and often
several different models will be used for the same software system, each model seeing the system
form adifferent standpoint, as will be discussed further below.

Modelling standpoints

Class modelling is a flexible technique with a number of applications. In thisit should be contrasted
with use case modelling; although the purpose of use case modelling is not specified in the UML, in
practice it is usually employed as part of areguirements elicitation exercise (as discussed in previous
chapters). Class modelling, on the other hand, is used throughout an object-oriented analysis and
design process, from reguirements engineering through to programming.

The designer should havein mind at each stage of development what the class model isbeing used for.
Neglect of this principle leads to poor design work. If you believe you have produced a class model

67

Object-oriented Analysis and Design

that represents “the system” (whatever the system happens to be), you are quite likely mistaken. A
single class model at best represents a particular standpoint on the system.

Design standpoints represent the different uses we make of modelling. We can identify three obvious
standpoints.

» A logical design standpoint: the model shows how a system should function logically, or how its
componentsinteract in alogical sense.

* A specification standpoint: themodel showshow the systemisbroken into manageable components,
and how those components interact.

« An implementation standpoint: the model shows how the system is structured, or how it will be
structured in the future.

Although these standpoints are not completely distinct, they do embody differences in how the
software system should be modelled. Specifically, you should see that analysis models will be more
of alogical standpoint, while design models will, ultimately, be an implementation standpoint.

As design progresses the standpoint of the designers will change. Initially — especially if the system
to be developed is replacing some other system or manual process — the designers will be concerned
mostly with how the system is currently structured. This existing structure may well not be the most
efficient or logical, but it is necessary to understand the operation and context of the existing system
before designing areplacement. Later, in the design process, the designers will be concerned with the
logical structure of the system. That is, regardless of how an existing system may be implemented, the
designers consider what the simplest, most effective, logical organisation of the new system is. Still
later, the designers will need to refine the model into adesign that can be implemented. Here they will
be concerned with specification and implementation standpoints.

The UML provides a set of modelling symbols and terminology and defines the concepts that they
embody. The first job of the novice designer is to learn this notation and come to understand the
concepts. The UML does not specify how these concepts areto be employed. In other words, it does not
provide a different set of symbolsfor logical and implementation standpoints; it is up to the designer
to ensure that his or her intentions are clear.

Classes and objects

This section discusses the nature of classes and objects. We begin with the philosophical background
of classification and move onto descriptions of objects and classes that will be useful for software
and system design.

Classification

The idea of classification is not a new one; philosophers have been studying the concept for at least
two thousand years. We classify things all the time: we classify people by gender or by age; we
classify motor vehicles by size, passenger capacity, and so on; we classify businesses into publicly
and privately owned entities, amongst others. When we classify something we are saying that it has
properties in common with others of itstype. Theideais, at heart, asimple one. We assume that if we
know something about the class, then that fact istrue of all the members of the classaswell. Inwriting
acomputer program that manipulates, say, customers bank accounts, we need to be concerned first of
all with the things that all bank accounts will have in common. We do not want to be concerned with
individual customers unless there is something about them that is different to the class as a whole.
Thisisaprofoundly important and simplifying principle.

By being members of aclassit is assumed that an object shares the general properties of the class. For
example, all members of the class “human being” have certain properties in common; although there
are a great many different human beings in the world, they are sufficiently similar that there should
be no difficulty distinguishing between any human being and, for example, a cheese sandwich.

68

Object-oriented Analysis and Design

Classification in object-oriented design

In object-oriented design, we classify all the objects that a system should know about. That is, we
specifying classes that collectively describe all the behaviour of the system. Although we speak
of object-oriented design, we are mostly interested in classes, rather than individual objects. Class
modelling is the process of assigning classes, and describing their inter-relationships.

Class modelling worksin software design because it allows complex systemsto be described in such a
way that the complexity becomes manageable. And all interesting (and most useful) software systems
will be complex.

The*things’ that a software system will process, recognise and serve are, by definition, objects. Users
of the system, keyboards, screens, bank accounts, stock items, printouts, and so on, are all objects.
By classifying these objects, that is, by creating and managing classes, the designers of the system
impose some control on the complexity of the system. Although acomplex system may manage many

millions of objects, it will frequently manage orders of magnitude fewer classes, perhaps fewer than
one hundred.

A definition of class and object

For the purposes of object-oriented modelling, an object can be defined as follows:

An object is a self-contained entity with well-defined, recognisable properties
(attributes) and behaviour (operations). It can interact with other objects.

Thisleads to the following definition of a class:

A class embodies the properties and behaviour that a collection of objects have in
common.

Examples of classes

Having presented this philosophical discussion, you may be expecting classes themselves to be
philosophical. In fact, they are usually not. Suppose we are designing a system to manage the work of
alending library. Some of the classes that will need to be considered are:

* Book

* Member

* Reader

» Borrower

* Loan

* Fine

* Barcode

» Return date

Of course, on more detailed inspection these may turn out to be inappropriate, and no doubt many
other classes will have to be considered, but these initial ideas are appropriate classes because:

* they are self-contained with well-defined behaviour and properties

« each will have some instances (objects) that have a great deal in common

69

Object-oriented Analysis and Design

* itisobviousthat each has an important role to play in the system

A further key point is that some classes may in fact have sub-classes. For example, “Reader” and
“Borrower” may in fact be types of “Member”.

Some thoughts on the relationship between classes
and objects

Here are some concepts to consider when thinking about classes and objects:

 In English we use the words “is @' to mean several different things. For example, in “Rover is a
dog” we are saying that Rover is an instance of class dog. When we say “A dog is a mammal”
we are saying that “dog” is a sub-classes of “mammal”, that is, all members of class dog share
propertieswith membersof classmammal. Therefore, in describing the rel ationship between classes
and objects, you should take some trouble to use unambiguous terms like “is an instance of” and
“isasubclass of”.

* A classmay have any number of instances, including one and zero. Classes can be defined that have
zero membersin practice and in principle. Student are often particularly reluctant to use classes that
have only oneinstance. The“Internet”, for example, isthe one and only instance of class“Internet”.
Again, this may seem odd, but class modelling is about classes, not individuals.

Concrete and conceptual classes

Previously we looked at some examples of classes that might be appropriate for a library computer
system. Y ou should be able to recognise an important sub-grouping of these classes. Classes such as
“Book” and“Member” arephysical or concrete classes; they correspond to“real” thingsinthe physical
world. However, the classes “Loan” and “Return date” are different “types’ of class. They do not
correspond to real, physical entitiesat all. We will refer to classes of this sort as “conceptual” classes.
Many student mistakenly use the term “ abstract” here; this should be avoided because “ abstract class”
has a quite different meaning, which will be explained later.

Some components of a software system have both concrete and conceptual representation. Consider
the“Book” class: The conceptua book “War and Peace” by Tolstoy existsindependently of the paper
and binding of areal physical book; indeed the conceptual book may be said to exist if the only text in
existence wasin acomputer'smemory. In other words, in asensethe book exists outside of itsphysical
representation. At the sametime, alending library loans physical, not conceptual, books. They arereal
entities made of paper, with barcodes for scanning, and so on.

This is not purely an academic distinction. Large, complex systems (particularly object-oriented
databases) may be impossible to implement unless this subtle distinction is understood. For example,
if the library's system only represents physical books, it has to store all information about each
book in each instance of the “book” class. But if the library has, say, ten copies of each book, then
most of this information is duplicated in each object, which is a waste of memory and can cause
data inconsistencies. This problem always arises when there is a distinction between physical and
conceptual representations of the same thing, and when there are multiple, similar physical instances
of the conceptual item.

This is not an issue on which the novice designer should lose sleep; the mgjority of systems can be
designed correctly even if the issue is not understood. However, it will improve the depth of your
understanding if you take the trouble to ensure that the sense of this section is understood.

Note

In an implementation, conceptual and physical classes will have different names to one
another. For instance, the conceptual class “Book” might be named “Booklnformation”,
while the physical class may retain the name “Book” .

70

Object-oriented Analysis and Design

Attributes

Attributes are the properties of aclass; on the whole they are things that can be measured or observed.
For example, an important attribute of the class Animal is “number of legs’. Different animals have
different numbers of legs, but all animals have the property “number of legs’. Even a snake has a
number of legs: it just happens to be zero. However, it would make no sense to talk about a plant's
having “zero legs’. The attribute “number of legs’ is not avalid attribute of plants.

Attributes are used rather vaguely in classification in general. For example, biologists distinguish
between insects and spiders because insects have the attribute “has six legs’ and spiders have the
attribute “has eight legs’. There is a numerical difference here. However, one of the ways that
biologists distinguish between reptiles and mammals is that reptiles are cold-blooded and mammals
are warm-blooded. There is no numerical differencein this case.

In class modelling the nature of attributesis formalised. We can say that:

Anattribute of an object isaproperty that hasaname, avalue and atype. The name
and type must beidentical for al instances of aclass, but the value may be different.

For example, suppose the class “Book” in our library example has attributes “title”, “publisher”, and
“date of publication” (there will, no doubt, be others, but these will do for now). The attribute “title”
has a name (“title”), it has a type (probably “text” or “string”). Objects of class “Book” will have
valuesfor thisattribute, for example, “War and Peace”. The attribute “ date of publication” hasaname,
and its type is “Date”. Again, objects of class “Book” will be published on different dates, but all
objects will have avalue for the attribute.

Theimportant point here isthat, although all instances of class“Book” have different valuesfor these
attributes, they al have the attribute, and they are al the same type. The date of publication of a book
will always be a date, and never a height. The title will always be a piece of text and never a colour,
and so on.

In some casesthe values of attributes di stingui shes one object from another. For example, if Roverisa
brown dog and Fido is ablack dog, we may reasonably say that their “colour” attributes are different.
There is no chance of confusing Rover for Fido. However, common sense indicates that if we see
two brown dogs, we cannot assume they are the same dog: there are many brown dogs in the world.
Indeed, even if al the attributes of two objects are identical, this does not make the objects identical.

Thereisan interesting philosophical issue behind this; many students have argued (sometimefiercely)
in classes that if we really knew all the attributes of a particular class, and two objects had al those
attributes in common, then they would of necessity be the same object. For example, two brown dogs
may be indistinguishable by colour, but the are distinguishable by position. If two putative objects
occupy the same point in space, then they must be identical.

Thisis all well and good, but irrelevant for this subject. Whatever the philosophical contentions, the
principle which object-oriented designers work to is that:

Two objects are not equal, or identical, just because they have identical attributes.
Objects are only identical to themselves, or things that refer to themselves.

For example, the person Mary Smith is identical to herself, and if Mary Smith is the world-record
holder for (say) javelin throwing, then the object “Mary Smith” isidentical to the object “world record
holder for javelin throwing”.

Ignorance of this principle leads to very subtle problems when designs are trandlated into programs.
For example, consider the following portion of a Java program:

String response = "HELLO'. toLower Case();
if (response == "hello")

{

71

Object-oriented Analysis and Design

Systemout.println("They are identical.");

}

el se

{
Systemout.println("They are NOT identical.");

}

This Java snippet creates an object of class String and sets it equal to the lower-case text "hello”.
The program then tests whether the “response” is equal to the object "hello". Since both objects have
the value “hello”, we might expect the program to consider them equal. But in fact the program will
inform usthat the two objects are not equal; the object "hello" and the object “response” haveidentical
attributes, but they are not equal to each other. The correct way to test whether two String objects have
equal attributes in Javaisto write something like:

String response = "HELLO'.toLower Case();
i f (response.equal s("hello"))

{

Systemout.println("They are equal.");

}

el se

{
Systemout.println("They are NOT equal .");

}

The equals method tests two objects to see if their attributes are equal. The == operator, on the other
hand, tests whether the objects themselves are, in fact, the same object.

It is akey principle of object-oriented design that attributes should be simple. The technical term is
atomic, meaning “not capable of division into smaller components”. If an attribute appears to have
attributes of its own, then it is not an attribute at all, and is probably an object in its own right. You
will find that programmers, of necessity, do not follow thisrule. Thisis becauseit is standard practice
to use classes to extend the functionality of a programming language. In Java, for example, numbers
— such as 12 and 4.7 — are atomic, but text strings are represented as objects. In this caseit is often
necessary to make objects attributes of other objects.

Also, although “has six legs’ may be an attribute of insectsto abiologist, it will never be an attribute
of any class in an object-oriented design. Thisis because it is not precise enough. A designer would
say that the class “insect” has an attribute “number of legs’ whose value, by default, is 6. We would
write thisin aformal way (as will be discussed later):

nuner O Legs: i nt eger (6)

Having said that, in the initial stages of design, it is inadvisable to be too precise about attributes. In
particular, usually the names are established first before the types and values. In some cases the types
of attributes will not be determined until writing the program code; however, at this point it must be
specified: many programming languages require the types of attributesto be fully specified.

In addition, during design there is no reason why the types of attributes have to match the types that
are available to a particular programming language. For example, real numbers (that is numbers with
fractional parts) are represented in Java by the types “float” and “double’. These are technical terms
with no meaning outside of certain programming languages. In design there is nothing to prevent the
use of attribute types “number”, rather than “float”, simply because it is easier for non-specialists to
follow. The translation into programming terms can be made later in the development if necessary.

It isimportant to understand that an object's attributes belong to the object in some way, that is, they
tend to be “private”. One object cannot automatically obtain, or change, the attributes of another. This

72

Object-oriented Analysis and Design

is just another way of saying the objects are self-contained. Part of the process of object-oriented
design is determining which of an object's attributes may be read and written by other objects, and
which will remain private.

Terminology note

Other terms for “attribute” include “instance variable”, “member variable” and “member
data’, and may differ between programming languages (Common Lisp, for instance, usesthe
term dot). Technically an “instance variable” is not exactly the same as an attribute, but the
distinction is not important enough to worry about at this stage. Java programmers tend to
use the term “instance variable’ rather than “attribute”, but “attribute” is preferred by most
designers and CASE tools.

Operations

In the last section we considered attributes, which say something about what aclassis. Operations say
what aclass does (or can have doneto it). When you have fully specified the attributes and operations
of aclass, then you have specified that class completely (some expertswould say that one must specify
the class's constraints as well, but that is largely beyond the scope of this course).

For example, the “Clock” class may have the operation “ display time”. Thisis something that a clock
does. It is not an attribute of class “clock”, because it does not tell us anything about objects of class
clock that we do not already know.

At the design stage, we tend to assume that all of a class's operations are accessible to other classes,
that is, classes can communicate by invoking each others operations. Thisiscalled “message passing”.
As design progresses, we usualy find that new operations have to be added that are private to that
class, because they are only concerned with internal operation of the class. Remember that classes
should be self-contained, and should expose as little as possible of their internal workings.

In the same way that attributes are formalised in object-oriented design, beyond what is true of
classification in general, operations are also formalised. An operation has a name, a parameter list,
and areturn value, much like afunction. The parameter list is (essentially) the data elements that will
be supplied to the operation. The return value is a piece of datathat can be returned to the object that
invoked the operation. Theseissues are not very important in the early stages of design (we may only
know the name of the operation), but become important as the design is translated into a program.
Note that an operation has access to the object's attributes, and can read or write them, but normally
has no access to the attributes of other objects.

Terminology

Other termsfor “operation” include* member function”, “ classfunction”, and “method” . Java
programmers tend to use the term “method”.

Dynamic behaviour and state

A classmodel, taken alone, is adescription of the static structure of a system; this meansthat it shows
the system in away that isindependent of time. In the library system discussed earlier, the individual
booksmay comeand go, and individual membersfor that matter, but the classes“Book” and “ Member”
persist. To say that alending libraries has books and membersis true, independent of time.

Of course, in reality the system will change over time. This change is reflected in the values of the
attributes of objects, and the numbers of instances of each class. The library may begin with 1000
books, and ten years later it may have 10 000 books; but there will never be a time when the class
“Book” isnot avalid one for the library. Similarly, the addresses and even the names of the members
will change. Thiswill be reflected in the values of the attributes of the instances of class “Member”.

73

Object-oriented Analysis and Design

The sum total of information carried by the attributes of an object is called its state. If we know the
state of an object, then we know everything there is to know about it. This last statement is true by
definition. If in describing an object the designer finds that its attributes are not sufficient to specify
its state completely, then they have overlooked some attributes.

If the state of an object isgiven by thevaluesof al itsattributes, then the state of the system if given by
the states of all its objects. In other words, the values of all the attributes of all the objects completely
specify the state of the system at any given time.

If state is so important, why can it not be represented on a class model? The reason is that there are
far better ways to represent changes in state. The UML provides state transition modelling for this
purpose. Inafull designit may be necessary to provide state transition diagramsfor some or all classes,
to describe their state changes in detail. The pattern of state change over time is called the dynamic
behaviour of a system, and modelling thisis called dynamic modelling. As well as state transition
modelling, the UML provides object interaction diagrams, activity diagrams, sequence diagrams and
communication diagramsfor dynamic modelling. One can, of course, describe the dynamic behaviour
of classesin plain language as well, and one probably should.

Only objects have state; classes do not have a state. This is because a class specifies properties that
are true of all objects of that class. However, a class can have a default state. This is the set of

attribute values that an object of that class will have by default, that is, if not provided with any other
information.

UML notation and conventions
Symbol

The diagram below shows the UML symbol for a class formally (left) and as an example (right). The
formal detail looks quite daunting, but you will see that most of the information is optional, and in
practice a class symbol is quite straightforward.

Figure5.1. The UML symbol for a class

Behekd e <=uger interface e em ent==

[tgs} Buron

name
attributel :typel (defavlt]) foregroundColowr: colour
attribute:typed (def avlt2) borderColovrcolour
AP O e
operation] (namel & typel a.) remmtypel push{)
operaton2{namea ypel 2.) remrntypel serForegronn d ol owr(col onr)
setBorder olowr{col our)

The class symbol has three compartments. The top compartment shows the name of the class, any
tags it has, and any stereotype it has. The stereotype of a class is a higher-level category to which
it belongs. Stereotypes are used to provide additional structure to a model, and to make it easier to
follow. Common stereotypes include «use case» and «actor». Most classes, in practice, will not need
stereotypes. The designer is at liberty to create new stereotypes to organise the work, if required. The
only tag that we will consider in this moduleis { abstract}, which will be discussed later.

The middle compartment contains the class's attributes. Each attribute can specify a name, atype and
adefault value. Only the name is compulsory.

The bottom compartment containsthe class's operations. These can be specified in full, with parameter
lists and return values, but very often only the name is given. To distinguish operation names from
attribute names, it is conventional to write an operation name with pair of brackets after it, like this:

74

Object-oriented Analysis and Design

push(). If the operation has a parameter list, then it can be written in the brackets, but, again, thisis
not compulsory.

The example shows a possible classdiagram for a“Button” class. By button we mean alittle rectangle
that appears on the screen, and responds to mouse clicks, aswith acomputer GUI rather than aphysical
button. In this example, the button has the stereotype «user interface elements». It is intended that
this stereotype be applied to al classes that represent user interface elements, like list boxes, menus,
windows, and so on. Again, thisis not compulsory, but it helps structure the model. There are no tags
associated with this class, so none are shown.

The“Button” classhasaforeground colour and aborder colour, and these can be changed. So we have
defined two attributes to store the colours. These attributes have type “colour”. Most programming
languages do not have an inbuilt “colour” data type, and at some point the programmer will have to
trandlate this type name into something that the programming language will understand. This is not
an issue for the early stage of design. It is clear what “colour” means, and thisis the important factor.

The operations of the class are “push()”, meaning simulate what happens when a button is pushed
(probably the screen appearance will change), and two operations to change the colours. Why can
another class simply not change the attributes to change the colour? It isvital to understand that aclass
should be, as far as possible, self-contained. It is up to the class to decide whether its colours can be
changed or not, and by which other objects. The operationsto change that colour will probably change
the values of the colour attributes, but it is up to the implementer of the class to decide how this will
happen. Another class does not need to know the internal operation of the “Button” class.

The operationsthat set the colour each have a parameter list with one parameter: the colour to be used.

You will see that the example class is very much simpler than the formal specification. In practice,
it iscommon for classes to start of with very little detail (no parameters, no types), and to be “filled
in” as design progresses.

A note on software

The class diagrams were created using a commercial package, Select SSADM. Various
software packages may support the UML notation to a greater or lesser degree, and so
diagrams made using different packages will differ from one another.

Naming conventions

The UML makes certain recommendations about how names of things are to be written, with
varying degrees of force. We recommend that you follow the UML naming conventions as if they
were all compulsory, because most professiona designers do, and you will want your work to be
understandable by your colleagues. The naming conventions are also in line with the Java naming
conventions, and should be familiar.

» Names of classes are written with an initial capital letter (like this: Button, not like this: button)
and have no spaces. To show where a space would be, the next letter is capitalised (like this:
BarcodeReader, not like this: Barcode Reader).

* Class names are singular, not plural. It is incorrect to name a class “Books’. Although there may
be many book objects, there is only one book class.

» Names of attributes and operations start with a lower-case letter, but may have capital letters to
indicate where the spaces would be, if the name would normally have spaces.

» Names of operations are followed by brackets () to distinguish them from names of attributes

The prohibition against spaces arises because most programming languages do not allow spaces in
their naming convention, and it is modern practice for the final model diagrams to be as close to a
program as possible. Some, but not all, CASE packages will enforce these conventions.

75

Object-oriented Analysis and Design

Finding classes

The customers of a software engineering project will not think of their work in terms of classes; it is
the job of the developers to determine suitable classes with which to structure their work. This job
requires experience and intuition, and invariably improves with practice. Here are afew general hints:

e The names of classes are usually nouns. A good place to start isto take awritten description of the
system and select all the nouns. Y ou will undoubtedly have to remove some classes and add others,
but this method provides a place to start.

* It is better to have too many classes to begin with, rather than too few. You can aways remove
some if you find that they are redundant

 Classesshould, asfar aspossible, correspond to entitiesthat the clientswould understand. Computer
terms rarely make good class names. Y ou will find that as development progresses you will need
to add classes to represent implementation factors, but you should not start off with these. Classes
should make sense to non-technical people, at least in the early stages.

* |f something has sub-types, or it isatype of something else, it is probably a class

* If something is important, but does not appear to be a class, it might be an attribute of some other
class

Asyou add detail to adesign you will discover new classes, and you can add these to the model. Y ou
will also often find that you can simplify a design by adding classes, as will be shown.

At all stages of development you should challenge your class model and be prepared to modify it
if necessary. It is important to remember that iterative, incremental and evolutionary methods will
have you update not only requirements, but the software design (and hence class model) for multiple
development iterations. Thisis especially important for agile process methods.

Relationships between classes

Finding and describing classesisthefirst stage of class modelling. The next stage isto determine, and
show, how classes are related.

In the simplest terms, arelationship between two classesis shown by aline (asit isin an entity relation
diagram):

Figure5.2. A relationship between two classes

Libraryhdemb er

W borows

Book

In general such arelationship is referred to as alink, association, or a collaboration.

In the diagram above, the classes are shown with horizontal dasheswhere the operations and attributes
normally go; thisis an indication that there are some operations and attributes, but they are not shown
on thisdiagram. It is also permissible to show a class simply as a rectangle, but then the reader does

76

Object-oriented Analysis and Design

not know whether the class has attributes and associations and they are not shown, or if it does not
have any at all.

The line connecting the two classes has an arrow to indicate the direction of the association. Objects
of class “LibraryMember” borrow objects of class “Book”, not the other way around. This is fairly
obvious from the context in this example, and the arrow could have been omitted, but if you are
working on a system which is less obvious it does well to include the arrows. Note that links should
have names, although you will not always want to show the name on the diagram (to reduce clutter).
If you cannot assign a sensible name to a link, it is probably not a real link, or the classes at each
end are incorrect. Normally alink should be able to have arelatively simple, short name, which will
probably be averb.

The UML is strict about the positions of arrows. It would be incorrect to draw the arrow in the figure
above on the line. Arrows on lines have a different meaning altogether.

The links shown above is an example of a “named association”; it is the most general kind of link.
The UML also recognises a number of special-purpose links, which will be described |ater.

Specifying relationships in detail

If alink isdrawnasasimpleline, it isassumed to be a one-to-one association. I n the previous example
this would mean that each member of the library can borrow exactly one book, and each book can be
borrowed by exactly one member. Thisis probably not correct. It is good practice to indicate on each
end of thelink itsmultiplicity, that is, the number of objects associated with thelink. Itis particularly
important to distinguish between “1" and “many” in multiplicities.

We could re-draw the previous example like the figure on the left:

Figure5.3. Indicating multiplicity

Libraryhdemb e Smdent
0.5
W horrows W smdies
0.6 1.3
Book couras

This indicates that at any given time a “LibraryMember” is involved with a “borrows” association
with an object of class Book, that is, alibrary member can borrow up to six books. At the same time,
abook can only be on loan to one member.

Thefigure on the right is an example of a many-to-many relationship. A student can be studying one,
two, or three courses at a particular time. Each course can be studied by an indeterminate number of
students. The symbols “M” stands for “many”, and means “some unspecified number”. The asterisk
(*) can also be used to stand for “many”. Note that the UML distinguishes a many that may include
zero from amany that does not. In the* students’ example, the number of students enrolled on acourse
varies from zero up to many, not from one up to many.

The multiplicity symbols are an example of what the UML specification calls end ornamentation.
End ornaments are symbols that can be used on the ends of associations to enhance their meanings.
Another common end ornament isthe navigability arrow. Thisis an arrow drawn on (not alongside)
the line and indicates the direction in which the class structure can be traversed for information.

77

Object-oriented Analysis and Design

Inheritance

Weindicated earlier that object-oriented modelling recogni sed some specialised types of associations.
Thefirst, and most important, of these is the generalisation-specialisation association. Y ou will have
encountered this previously in when studying use case modelling; it is now time to examine this
relationship in more detail.

As areminder, the symbol for a generalisation-specialisation relationship is shown below:

Figure5.4. Generalisation-specialisation represented in the UML

Prermi ses
ardress
floorarea
parkingSpace

| |
Leaschol dPrermises FreeholdPremi ses
leageDuration landPeg stryFee
serviceCharge

Thearrow pointstowardsthe most general class. Inthisexample, weare considering part of asystemto
be used by an estate agency for assisting in finding suitable premises for small businessesto purchase.
The class “Premises’ represents any premises. Itsimportant attributes are the address, floor size, type
of use permitted, amount of parking space, price expected, and so on, but these are not all shown inthe
diagram for reasons of lack of space (ellipses are used to indicate this). There are two important sub-
classes of premises: leasehold premises, and freehold premises. These have all the same properties of
“Premises’, and some additional ones. For example, leasehold premiseswill naturally have an address
and asize, but they will also have alease duration, aground rent, and some others. Similarly, freehold
premises will have properties that are not applicable to leasehold premises, or to premisesin general.

It would be an error to show the attributes “address’, “floor area’, and so on, in “ L easehol dPremises’
and “FreeholdPremises’. These classes will automatically have these properties, as they will inherit
them from “Premises’. The same mechanism appliesto operations: any operations of “Premises’ will
apply aso to its sub-classes and should not be shown again in the diagram except if the sub-classes
do different thingsin these operations.

There may also be sub-classes of “LeaseholdPremises’ and “FreeholdPremises’. These will inherit
the properties of all their super-classes. So classes can form a complex hierarchy. When a sub-class
inherits properties from a class other than its own base class, thisis called indirect inheritance.

Terminology

A variety of different terminology is used to denote different parts of a generalisation-
specialisation relationship. Using the above figure as an example, we could say:

» “Premises’ isageneralisation of “LeaseholdPremises’ and “FreeholdPremises’
» “Premises’ isthe base class of “L easeholdPremises’ and “ FreeholdPremises’
» “Premises’ isthe super-class of “L easeholdPremises’ and “ FreeholdPremises’

» “LeaseholdPremises’ and “FreeholdPremises’ are sub-classes of “Premises’

78

Object-oriented Analysis and Design

» “LeaseholdPremises’ and “FreeholdPremises’ are specialisations of “Premises’

Multipleinheritance
Itispossible for a classto be a sub-class of more than one base class.

For example, “Radio” and “ Television” are sub-classes of “ElectronicDevice’. “Television”
and “Car” are sub-classes of “TaxableProperty”. “Television” inherits properties of
“ElectronicDevice” and of “ TaxableProperty”. “Radios’ are not taxable, and therefore cannot
be a sub-class of “TaxableProperty”. “Cars’ are not electronic. This is a clear example of
multipleinheritance. Thisexampleisquiteartificia, to illustrate acase whereit isdifficult to
avoid multipleinheritance. In many casesit will be possible to restructure amodel to avoid it.
Note that some programming languages (including Java) do not allow multiple inheritance,
so many designers avoid it as well.

Abstract classes

An abstract classis one that can have no direct instances.

An abstract class has no direct instances logically, or by definition. But a class is
not abstract merely because it happens to have no instances. For example, the class
“PersonWWhoCanRunAMilelnLessThanThreeMinutes’ happens to have no instances at present, but
thereisno logical reason why this should be the case. No doubt careful use of performance-enhancing
drugs and twenty years of selective breeding could cause this classto be instantiated. For aclassto be
abstract it must be logically impossible, not physically impossible, that it be instantiated.

In addition, a class is not abstract merely because it does not correspond to a real-world entity.
This mistake is commonly made by novices; it is not unusual to see beginners label classes like
“BankAccount” or “Transaction” as abstract because they represent non-physical things. The correct
term for these classes, as mentioned earlier, is conceptual.

As an example, consider a computer system that manages information about certain products that a
business manufactures. The bulk of information about a product (e.g., price, delivery time, warranty
duration) is encapsulated in a class called “Product”. However, we may choose to create classes to
represent the specific products we produce, and have them as sub-classes of “Product”. In this case,
by definition there are no direct instances of class “Product”, but there will be instances of the sub-
classes of “Product”. Because “Product” is never directly instantiated, it is an abstract class.

What is gained by doing this? In short we have gained a measure of simplicity. By gathering most
of the important information about the products into a single class (“Product”) we have removed the
need to duplicate this information in the different sub-classes of “Product”.

Making “Product” abstract has two important benefits. First, the reader of the model will know
immediately that “Product” has a particular role in the system, that of providing structure and
simplification. Second, the compiler that generates the final program will know that there can be no
direct instances of class “Product”. This means that (i) it does not have to use memory to store the
details of the instances, because there are none, and (ii) it is able to prevent the programmer making
some trivial mistakes. Consider this definition in Java:

abstract class Product

{

/1... details go here

}

If the program attempts to create an object of this class |ater, it can only be because the programmer
has made an error. The compiler will flag any such attempt as a compile time error.

79

Object-oriented Analysis and Design

An abstract class can have abstract operations. These are operations that are specified, but not
implemented. It is up to the subclasses to provide a full implementation of the abstract method.

An abstract class with no-subclasses is more than likely useless. If you find this on your models you
have probably made a mistake.

Itispossibletoindicate that aclassis abstract in aclass diagram by adding the { abstract} tag beneath
the class's name.

Aggregation and composition

All object-oriented designers use generalisation-specialisation rel ationships all thetime. They arevital
to good design. The relationships we will consider in this section are defined by the UML, but it is not
generally agreed that they are a special kind of association at all.

Aggregation

Aggregation isagenera term for any whole-part relationship between objects. Its symbol is awhite
diamond, like this:

Figure 5.5. The representation of aggregation in the UML

Ay

1. | 1.
Soldier Wespon

This diagram can be read as “an Army is an aggregate of one or more soldiers and one or more
weapons’. The aggregation is expressing a loose whole-part relationship between the army and its
constituents, where the constituents are not necessarily members of the aggregate. For example, if the
army as an entity ceased to exist there would still be soldiers (they would simply be unemployed).
Thistopic haslead to some very heated debate. In practice the distinction between a computer system
which works, and a system which does not, is highly unlikely to hinge on whether the designers used
aggregations or named associations. An aggregation can usually be replaced by an association called
“has’ without much loss of clarity.

Composition
It is not clear that composition is more expressive than a simple association labelled “contains’.
Composition expresses a whole-part relationship where the “parts’ are definitely contained within
the “whole”.

Figure5.6. Therepresentation of composition in the UML

Book

1%] |
Pages Binding

This example can be read as “a book consists of one or more pages, and one binding”. Note the
distinctions between this and the previous example. First, the binding and pages physically comprise

80

Object-oriented Analysis and Design

the book; it isimpossible for the binding and pages to be in one place and book in another. Second,
destruction of the book would imply destruction of the binding and pages.

Self-association and roles

So far we have shown how classes can enter into associations with other classes. However, it is
allowable — and often essential — to model a class as being associated with itself. For example,
suppose we are designing a system for managing contracts, and we want to show that a contract can
consist of anumber of small sub-contracts. Sub-contracts have exactly the same propertiesascontracts.
We could represent this as follows:

subContract

This example says that one object of class “Contract” consists of zero or more objects of class
“Contract”. To clarify the relationship, it is customary to use role names. Where an association name
describes the overall nature of the association, arole nameis attached to the end of an association, and
describes the role played by the object at that end. If the example above, one object plays the role of
“main contract” while zero or more others play the role of “ sub-contract”. Because role names are so
important in these cases, some CASE toolswill report an error if they are omitted.

Link classes and link attributes

In many cases each instance of an association has properties of itsown. It is sometimes helpful to show
this in the model for increased expressiveness. In addition, it gives us a way to show that multiple
classes are involved in the same association.

A link attribute simply assigns a value to a particular instance of the link, that is, for each pair of
objects that are associated there is a particular value of the attribute. For example, in the top diagram
of the figure shown below:

Figure5.7. Link attributes

Custorner
makesTransaction [_ | transact onburnber
Bark
Custorner
Dhunber
makes Transact on
transact onbiurnber
Bark dane
e

“transactionNumber” is a link attribute. This model says that the bank and its customers enter into
transactions, and each transaction has a particular number.

However, the association may be too complex to be represented by a single attribute. In this case we
can use alink class. With alink class there is one instance of the class for each pair of objects that

81

Object-oriented Analysis and Design

are associated. The link class can have any number of attributes, and can quite legitimately enter into
relationships of its own with other classesin the system. In theexample above, thelink class* Number”
defines each transaction carried out by the bank with its customers. It has attributes to indicate the
nature and date of the transaction, as well as the number. Link classes can also have sub-classes. For
example, it may be useful to indicate that there are different types of transaction by means of sub-
classes, rather than simply having an attribute called “type”.

Link classes are a very powerful and expressive tool, but do take some experience to able to use
effectively.

Constraints and notes

Notes

Asin use case modelling, it is often very helpful to be able to annotate a diagram to show particular
features. The notation is exactly the same:

Figure 5.8. The notation for notes

Elah, blak,
-------- blh...

You can, and should, apply notes wherever you think they will be helpful to the reader, but they
should not be viewed as a substitute for proper documentation. A class model is not complete until all
classes, attributes, operations, and associations, have been documented. Notes are useful for pointing
out specific details on diagrams.

Constraints

Constraints are additional information about aclassthat are not associated with any particular attribute
or operation. A typical constraint might say, for example, that one attribute will have a value which
depends on some other attribute. It is customary to write simple constraints below the classin braces,
{likethis}.

Constraints are becoming increasingly important in object-oriented modelling, asthereisanincreasing

interest in formalising the technique. A scheme called the object constraint language is under
development to support formalised constraints, but this is beyond the scope of this course.

Class-Responsibility-Collaborator cards

Class-responsihility-collaborator cards (CRC cards) are not a part of the UML specification, but they
are a useful tool for organising classes during analysis and design.

A CRC card isaphysical card representing a single class. Each card lists the class's name, attributes
and methods (itsresponsibilities), and class associations (collabor ations). The collection of these CRC
cards isthe CRC model.

Using CRC cardsis a straightforward addition to object-oriented analysis and design:

1. Identify the classes.

2. List responsihilities.

3. List collaborators.

82

Object-oriented Analysis and Design

CRC cards can be used during analysis and design while classes are being discovered in order to keep
track of them.

CRC cards have various benefits, which you might notice makes them very amenable to iterative and
incremental process models, especially agile ones:

e They are portable: because CRC cards are physical objects, they can be used anywhere.
Importantly, they can easily be used during group meetings.

» They aretangible: the participantsin ameeting can all easily examinethe cards, and hence examine
the system.

e They have alimited size: because of their physicality, CRC cards can only hold a limited amount
of information. This makes them useful to restricting object-oriented analysis and design from
becoming too low-level.

Class responsibilities are the class's attributes and methods. Clearly, they represent the class's state
and behaviour. Collaborators represent the associations the class has with other classes.

CRC cardsare useful when the devel opment of classes need to be divided between software engineers,
asthe cards can be physically handed over to them. A useful time to do thisis when classes are being
reviewed, for, say, determining whether they are appropriate in a design.

From model to program

During object-oriented development, the models will tend to become more detailed, and there will
be a shift in standpoint from alogical to an implementation view. Developers using the waterfall or
similar process models fedl that there should be a strong correspondence between the final model and
the program code it results in. However, iterative and agile methods often eschew heavy amounts of
documentation, and realisethat model s (including object models) may not alwaysaccurately reflect the
code, since both will alwaysbe changing asthe code-base devel ops, and asthe customers' requirements
develop over time.

For agile methodologies it isimportant to remember that documentation is secondary to the software
being produced. Slavishly attempting to specify every last component of the software in a detailed
object model is antithetical to agile process methods, and there are many published studies showing
that such complete, upfront designs are both inadequate (since requirements, and hence designs,
continuously change) and detrimental to software engineering as awhole.

Dynamic behaviour

The object model which we have just been discussing is a static model of classes and their
relationships. It does not show how the classes call on one another to perform the functions required
in the software system.

These dynami ¢ aspects of the object model are usually represented in other diagram types of the UML.
We will be briefly discuss interaction diagrams.

Interaction diagrams

Interaction diagrams show how objects interact with one another. Specifically, they show which
objects are currently executing, and what methods they are calling on other objects.

There are various kinds of interaction diagrams that can be employed in the UML. We will examine
one specific type, the sequence diagram. Sequence diagrams show how objects interact with each
other over time. In other words, sequence diagrams show the sequence of interactions between objects.

83

Object-oriented Analysis and Design

Figure5.9. Sequence diagram notation in the UML

. Borrower . Book : Catalog
I I I
I I I
I I I
| : requestBook | |
% ;isAvailable i
I
|
| < """""""""""""""""" !
| : checkOut |
I 1
I
| S —————
I .
JGmmmmmmm e L] I
| !
I
!

The figure above shows a sequence diagram of how books are checked out of alibrary. Notice how
the objects are arranged horizontally along the top of the diagram, and are represented as rectangle
boxes, just as classes are. It is important to notice the colon before the class name in these boxes —
this colon tells us that the box represents not a class, but an instance of the class. If the instance should
be given a specific name, then the name appears before the colon. For example, “artOfWar : Book”
represents an object called “artOfWar”, of class “Book”. Thisis exactly the same as when specifying
attributes in classes (see the section called “ Attributes” above).

It is important to realise that it is because sequence diagrams represent the interactions a software
system undergoes over time that it is interested in objects rather than classes. A running software
system consists of instances of classes, and not of the classes themselves.

Time is represented vertically, with earlier events happening closer to the top. This means that
seguence diagrams should be read from top to bottom. Each object also has a vertical life-line that
shows us the object's period of existence. Interactions are represented by solid and dotted lines, each
of which has an arrow and a label. Solid lines show method calls, and point from the life-line of the
object making the call towards the object which will execute the method. Therectanglesaong thelife-
line represent the time over which an object is executing a function. Dotted lines represent a return of
control from the object executing a method to and object which had originally called it.

Notethat the method names shoul d be operations bel onging to the obj ect to which thearrow ispointing.
“Borrower” calls“requestBook”, an operation belonging to an instance of class“Book”.

A useful way of using sequence diagramsisto outline difficult use cases as a sequence diagram: this
will highlight what objects are required in developing the use case, aswell aswhat actions each object
will perform in order to complete the use case. Further, a sequence diagram can then be thought of as
showing how the system reacts to events, the events being the input from the actor in the use case.

The UML also prompts us to use sequence diagrams in this way: remember that actors in use cases
are themselves classes. We can easily use instance of these classes (of these actors) as valid objects
in sequence diagrams.

Summary

Class modelling is the key modelling technique for object-oriented designers. If you arein a position
to say that you understand class modelling, then you can reasonably claim that you understand
object-oriented design. Of course, an understanding of other object-oriented techniques (e.g., use case
modelling) will also be helpful.

Object-oriented Analysis and Design

Class modelling centres on a small number of philosophical points, which must be understood
extremely well. There is not a great deal of factual material to remember, but these key points are
crucial. These are the most important issues:

» Thedistinction between objects and classes
» The nature of attributes and operations
» The use and specification of associations, especially generalisation

In constructing a class model, the first step must be to obtain a working list of candidate classes. As
design progresses, these classes will be refined and some will be deleted. At an even later stage, new
classes will be introduced to support more detailed, implementation-related concepts.

A classmodel isrefined by finding and specifying associations. Doing this hel psto determine whether
theinitial choice of classesis a sound one, and how to improveit.

Ultimately the class model will be transformed into a computer program.

Review

Questions

Review Question 1

Which of the following entities are likely to be of interest when considering system design from a
“logical” point of view, and which from an “implementation” point of view? Which are relevant to
all standpoints? Clerk; Screen; Mouse (the input device, not the rodent); File; List; Ledger; Service
technician; Database; Customer;

A discussion of this question can be found at the end of this chapter.

Review Question 2

Fill in the gaps with an appropriate word or phrase, or select the correct one of the indicated choices:

A class encapsulates the behaviour and properties of a number of [|. The members
of a class are also referred to as [. The minimum number of instances of a class is
[], the maximumis| . In object-oriented design, an object [can/cannot] be be
ainstance of more than one class, and an object [can/cannot] change which classit is an instance of.

A discussion of this question can be found at the end of this chapter.

Review Question 3

Suppose you are designing a computer system to carry out stock control in alarge book warehouse.
The system should store extensive details of each book, including at least the following information:
authors, title, publisher, date of publication, size, number of pages, binding format, shelf location, re-
order level, purchase price, sale price. Which of these properties of books do you think are relevant
to the conceptual class “Book”, and what properties to the concrete class “Book”? This problem is
somewhat more difficult than it first appears; see the answer for further discussion.

A discussion of this question found at the end of this chapter.

Review Question 4

Fill in the blanks with an appropriate word or phrase:

Attributes define the properties of a class. In a class specification an attribute has a [|
and a|[| (e.g., number, text). In each object of that class the attribute will also have a

85

Object-oriented Analysis and Design

[]. Thismay be different for each object, but no instance of the classwill lack the attribute
entirely. For exampleif | say that a particular vehicle has 12 wheels, | am implying that vehicles have
a attribute whose name is “[]”, whose type is “[" and whose value in the
particular caseis[12]. The minimum number of attributesthat a classmay haveis|]. The
maximum number isunlimited, but in practiceit is difficult to manage a class with more than about 30
attributes. Java programmers tend to use the term [| in preference to attribute, but these
are essentially the same thing.

A discussion of this question can be found at the end of this chapter.

Review Question 5

Draw aUML class symbol that has the following specification. The classis called “ Customer”. It has
four attributes: name (which is text), address (also text), balance (a number), and credit rating (type
currently unknown). It has one operation: “ printStatement()”, which has no parametersor return value.

A discussion of this question can be found at the end of this chapter.

Review Question 6

In the early stages of development it is usually better to identify too many classes than too few. You
can then rationalise you choice of classes by removing, modifying and merging them. The following
list is of classesthat may be considered for deletion or absorption into a new class. Suggest why this
might be the case for each example.

» Fred Bloggs, a customer of the bank

+ Colour

 Hard disk

 Central processing unit

e Linked list

* Red

» Test procedure

* Print

* List of customers

For as many of these examples as you can, suggest an application where it isnot abad choice of class.

A discussion of this question can be found at the end of this chapter.

Review Question 7

Draw the class diagram for the radio/televsion/car example given in the text, showing where multiple
inheritance occurs.

A discussion of this question can be found at the end of this chapter.

Review Question 8

Construct a class model to represent the following information. The customer is a company that
speciaisein the supply of specialist musical recordings, of the typethat are difficult to obtain through
mainstream record shops. The customer would like to make it possible for their clients to order their
products on-line using a Web browser. The on-line system is to provide full details of each musical
recording, and will be integrated into an automated stock control system. In this way their client will

86

Object-oriented Analysis and Design

be able to tell immediately if the items required are in stock. The customers describes the details of
their stock asfollows:

We stock about 10,000 different musical recordings, usually with 1-10 of each item
instock at any given time. With more popular itemswewill stock ten or more copies
of the same recording, perhapsin different formats.

We stock recordings in different formats: cassette tapes, audio CDs and audio
DVDs. The publishers we buy from will normally supply arecording in more than
oneformat. For example, usually wewill get CDs and cassettes of agiven recording
from the same publisher.

We buy our stock from music publishers. For each publisher we record the name
and address, and the name and e-mail address of our contact person there. When we
place an order we need to know the publisher's catal ogue number, whichisgenerally
different for different formats.

When a customer looks at our Web site, we want to be able to give extensive
details for al our recordings. For example, we will want to display the title,
performer, composer, date and venue of recording, copyright holders and some
general information. In addition, we want to display the titles and durations of all
the musical tracks. This is complicated by the fact that the CD, DVD and cassette
formats generally don't have the same tracks. Because aDVD islonger than a CD,
it will usually have afew extratracks. A cassette tape usually has even fewer tracks
than the CD.

A discussion of this question can be found at the end of this chapter.
Review Question 9

Redraw the contract-subcontract relationship shown below so that it does not use a self-association.
Do you think your model is more or less expressive in this form?

sublContract

A discussion of this question can be found at the end of this chapter.

Review Question 10

What is meant by the statement “objects are not classes, but instances of classes. However, classes
can be considered objects’? In other words, in what sense is a class also an object? (Thisis atricky
guestion if you are not absolutely clear on the distinction between “classes’ and “objects’).

A discussion of this question can be found at the end of this chapter.
Review Question 11

Write asimple, one-line definition of each of the following key terms. Try to do thiswithout referring
back to the notes if possible. For each term, give an example.

» Attribute
* Operation

» Sdlf-association

87

Object-oriented Analysis and Design

* Generalisation
* Polymorphism
* Link class

* Multiplicity

o Stereotype

A discussion of this question can be found at the end of this chapter.

Review Question 12

Which of the following are true? Give an example to support your decision.
» If Zisasubclassof Y, and Y isasubclass of X, then Z isasubclass of X

» If Zisassociated with Y by an association A, and Y is associated with X by an association A, then
Z isassociated with X by an association A

» If Z isassociated with Y by an association A and by an association B, then A and B are different
names for the same association

* If each object of class Z is associated with ten objects of class Y, and each object of class Y is
associated with ten objects of class X, then there are 100 objects of class X for each object of classZ

A discussion of this question can be found at the end of this chapter.

Review Question 13

What is the difference between class modelling, and entity-relationship modelling? In what ways are
classes and entities similar? In what ways are they different? (If you have not completed the part of
the course that deals with entity-relationship modelling, you may find this question difficult).

A discussion of this question can be found at the end of this chapter.

Review Question 14

Consider these three classes: Rectangle, Circle, and Line, which are subclasses of a general Shape
class. These classes have operations drawRectangle(), drawCircle(), and drawLine() respectively.
Each of these methods cause the appropriate shape to be drawn. Is this system exhibiting
polymorphism or not?

A discussion of this question can be found at the end of this chapter.
Review Question 15

What is the difference between alink class and alink attribute? Gives examples of each.

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

Probably “Clerk”, “Customer”, “Ledger” and “Service technician” are important in a logical
standpoint. None of these arelikely to transform directly into parts of acomputer program. On the other
hand, “File”, “List” and “ Database” probably will. “Screen” and “Mouse” are less easy to categorise.
In some cases these will in fact simply be alternative representations of the human beings that will
interact with a system. For example, a clerk may use a keyboard and a mouse; in some systemsiit is

88

Object-oriented Analysis and Design

the fact that these particular devices are in use that isimportant, but in most it will be the person and
that person’'srole that are important.

Discussion of Review Question 2

A class encapsulates the behaviour and properties of a number of [objects, entities]. The members
of aclass are also referred to as [instances]. The minimum number of instances of a classis [zero],
the maximum is [unlimited, infinite]. In object-oriented design, an object [cannot] be be ainstance of
more than one class, and an object [cannot] change which classit is an instance of .

Discussion of Review Question 3

Some things are clearly properties of the conceptua class. For a book, things like the title, author,
date of publication and publisher are probably conceptual. They will be independent of any physical
realisation of that book. For example, there are many copiesof Tolstoy's“War and Peace” in existence,
in many different formats, but al share the same fundamental properties.

In alibrary, the shelf location and bar-code number are properties of the physical book.

Less straightforward cases are properties like the format (size, shape, binding) of the book. These
are clearly “concrete” properties. However, there are many different copies of each of these formats.
Are these individual copies “physical” and the formats themselves “conceptual”? This is not a
straightforward question. It may bein avery complex book handling system that we have to institute
anumber of different classes to represent book information.

Discussion of Review Question 4

Attributes define the properties of aclass. In aclass specification an attribute hasa[name] and a[type]
(e.g., number, text). In each object of that class the attribute will aso have a [value]. This may be
different for each object, but no instance of the class will lack the attribute entirely. For exampleif |
say that a particular vehicle has 12 wheels, | am implying that vehicles have a attribute whose name
is “[number of wheels]”, whose type is “[number, integer]” and whose value in the particular case
is[12]. The minimum number of attributes that a class may have is [zero]. The maximum number
isunlimited, but in practice it is difficult to manage a class with more than about 30 attributes. Java
programmerstend to usetheterm [instance variable] in preferenceto attribute, but these are essentially
the same thing.

Discussion of Review Question 5

Customer

address: text

bl s e ronnb ex(d)
creditE ating
nare; text

printStatement)

Discussion of Review Question 6
Bad classes:

» Fred Bloggs, acustomer of the bank: thisis potentially abad class because Fred Bloggsis an object
(instance), perhaps of class Customer. Itisunlikely that therewill be awhole class of Fred Bloggses.

» Colour: colour is likely to be an attribute of something. If you have studied Java programming
you will probably come across a class called Colour. However, Java does this as an extension of

89

Object-oriented Analysis and Design

the language, not because Colour represents anything in a model. However, in a program for, for
example, colour mixing in printing machinery, perhaps Colour is important enough to be a class
initsown right.

» Hard disk: thisis a bad class because it is concerned with the internal operation of the computer.
In modelling, we want to avoid detail of this depth. “Document” and perhaps “Folder” may be
reasonable modelling concepts. However, in an application to design computers, HardDisk may be
asensible class.

» Central processing unit: has all the same problems as the example above

» Linkedlist: if you didn't know what alinked list was, then that is as good areason as any for getting
rid of it. Even if you did, it is still too technical to usein modelling

* Red: is probably the value of an attribute
» Test procedure: thisis probably an operation, or perhaps a use case
 Print: thisisamost certainly an operation (or a Printer class perhaps?)

* List of customers: too much detail. “ Customer” isasensible class name. The fact that there are more
than one customer should be represented by the multiplicities of associations with other classes
(see later).

Discussion of Review Question 7

TaxableProperty ElectronicDevice

SER

[1 [|
Car Television Radio

This is a somewhat contrived example, and is unlikely to occur in a real application. However,
multiple inheritance does occur in real applications all the time. It is probably more important in
programming, rather than modelling as such. For example, a popular style of programming called
“mix-in” programming makes extensive use of multiple inheritance. In mix-in programming a large
number of very simple, genera-purpose classes are defined, and these are inherited in various
combinations by the major classes. Because something is important in programming, this does not
necessarily mean it should be used in modelling. Thistopic is an important and controversial one.

Discussion of Review Question 8

Thereis no single right answer to this question. Y ou should be prepared to discuss you solution with
your tutor/classmates (hint: a good answer will probably contain between 5 and 10 classes).

Discussion of Review Question 9

Clontract 0_*

consi stsOf

SubContract

90

Object-oriented Analysis and Design

Inthisalternative formulation, thereisno self-association, but a SubContract is shown as a sub-class of
Contract. The representation that used a self-association did not make this class/sub-class relationship
explicit; indeed it may not really be true. If one is prepared to accept the implicit assumption that
SubContract isasub-class of Contract, then the diagram shown above does effectively remove the self-
association. This may be areasonable approach for someone who really find self-associations difficult
to follow. So perhaps some improvement in expressiveness has been gained, but at the expense of a
slight loss of accuracy.

Discussion of Review Question 10

Suppose a class model has three classes, called ClassA, ClassB and ClassC. Objects of these classes
will share properties(thisisthedefinition of being aninstance of aclass, after all). However, theclasses
themselves will also have properties in common. For example, they will all the attribute “name”. Its
valueis“ClassA” for ClassA, “ ClassB” for ClassB, etc. All classeswill havethe property of being able
to enter into relationships with other classes. All classes will have the attribute “ numberOf Attributes” .
Thuswe can say that thereisaclasscalled “ Class’, which embodiesthe behaviour of al classes. Each
actuad classisaninstance of class“Class’.

This is not simply an academic point. Being able to express a modelling notation in terms of the
modelling notation itself is avery powerful way to ensure that the modelling system is consistent. If
you study the UML specification documents, you will find that all UML diagram rules are themselves
specified in UML notation. Thisis called meta-modelling

Discussion of Review Question 11

« Attribute: a property that objects of a class have, that can be expressed in terms of a name, atype
and avalue. For example, class“Vehicle’ hasattribute “ numberOfWheels’. Different vehicleshave
different values of this attribute.

* Operation: awell-defined unit of behaviour of an object of a class. For example, class Vehicle has
operation “startEngine()”.

» Self-association: an association between one or more objects of a class, and one or more objects
of the same class. For example, each object of class “LivingThing” isinvolved in a one-to-many
association called “ eats” with other objects of the same class (technically | suppose that someliving
things don't eat other living things, but | hope you get the general ided).

» Generaisation: the property that a class has of representing behaviour and attributes of a number
of subclasses. For example, class Vehicle generalises classes Car, Bus and Tram, etc.

 Polymorphism: differences in behaviour between different sub-classes of the same base class.
For example, al sub-classes of Vehicle have the operation “startEngine()”, but the mechanism of
starting the engineis different in each case.

» Link class: a class that specifies the details of an association between two other objects. For
example, the relationship between a seller and abuyer may be complex enough to need aclass (e.g.,
SalesTransaction) to represent its details.

» Multiplicity: the number of objects that take part in each end of an association. For example, the
multiplicity of the relationship between Driver and Vehicleis 1 to (1-*), meaning adriver can drive
one or more vehicles.

 Stereotype: acategory to which aclass belongs, e.g., “Actor”, or “User interface element”.
Discussion of Review Question 12
» If Zisasubclass of Y, and Y is a subclass of X, then Z is a subclass of X. Thisis correct, and a

fundamental principle of object orientation. If mammal is a type of animal, and dog is a type of
mammal, then dog is atype of animal. Can you think of adog that isamammal but not an animal?

91

Object-oriented Analysis and Design

* If Zisassociated with Y by an association A, and Y is associated with X by an association A, then
Zisassociated with X by an association A. Thisisfalse. For example, lions eat zebra and zebra eat
grass. But lions don't eat grass. The association is not carried across the classes. This is one of the
things that distinguishes generalisation/specialisation from other relationships.

» If Zisassociated with Y by an association A and by an association B, then A and B are different
names for the same association. This is also false. Two objects can be associated in completely
different ways. For example, customers deposit money in a bank account; customers withdrawn
money from a bank account. “Deposit” and “withdraw” are two totally different associations.

« If each object of class Z is associated with ten objects of class Y, and each object of class Y is
associated with ten objects of class X, then there are 100 objects of class X for each object of class
Z. Thisis correct. For example, if a program has ten screen windows, and each window has ten
buttons, then there will be 100 buttons for each program.

Discussion of Review Question 13

Class diagrams can be considered to be highly-developed and regularised entity relationship models
(ERMs). Class modelling provides a definite notation and meaning for concepts that are weakly-
defined in ERMs. For example, an relationship called “is-a’ can be used in an ERM to show that one
thing is a type of another thing, or that one thing is an instance of another thing. Moreover, when
an “is-a’ relationship is used, it does not necessarily denote any inheritance of properties. In ERMs
properties are usually represented as entities as well, so this would be difficult to show. The same
appliesto relationships that are often written as*“has-a’. Thisis an aggregation, but the different types
of aggregation are not as well defined in ERM asthey are in class modelling.

For al these differences, ERMs and class diagrams are more similar than they are different; both
attempt to show the static structure of system in terms of the “things’ (entities; classes) of which it
is comprised.

Discussion of Review Question 14

The system as described is not polymorphic. There is a difference in behaviour between the different
subclasses of Shape, and this differenceisin an operation that is philosophically common to the three
classes. That is, drawCircle(), drawRectangle(), and drawlLine() are obviously drawing operations.
However, thereis no corresponding “drawing” operation in the base class “ Shape’. The system could
not invoke the drawing operation in Shape, with a view to the correct sub-class being drawn. To be
polymorphic, the base class needs to have an operation called “draw()” that is abstract, that is, does
nothing. The sub-classes al provide their own implementations of “draw()”. Now if there is an object
of an sub-class of Shape (it doesn't matter which), another object can causeit to be drawn by invoking
the “draw()” operation. The presence of “draw” as an abstract operation in Shape guarantees that all
sub-classes of shape will respond to a“draw” operation. Thisis a powerful simplifying principle.

Discussion of Review Question 15

Both link classes and link attributes provide additional information about associations than can be
carried by a simple association name. A link attribute carries only a single piece of information and,
being and attribute, cannot interact directly with other objects. A link class is a fully-fledged class
and can take part in class relationships of its own. It can carry as much information as required. Link
attributes are simpler to read and simpler to implement, but are not as versatile. For example, an
employer and an employee may interact in away defined by a contract. A simple link attribute might
be a contract number. Thiswould identify different contractual agreements between the same entities.
However, implementing Contract as a class would allow alot of extrainformation to be represented.
Of coursg, it is only worth doing thisif it improves the expressiveness or accuracy of the model.

92

Chapter 6. Data-Flow Diagrams

Objectives

At the end of this chapter you should be able to:
» Explain the purpose of data-flow diagrams.
* Describe the meaning of the symbols used in data-flow diagrams.

» Describe the generic framework activities at which data flow diagrams can be used and the
corresponding roles of data-flow diagrams in these stages.

» Construct smple data-flow diagrams from a textual description.
» Construct alevelled set of data-flow diagrams.

» Understand how to check the consistency of related data-flow diagrams.

Introduction to data-flow diagrams

What are data-flow diagrams?

Data-flow diagrams (DFDs) model aperspective of the system that ismost readily understood by users
—the flow of information through the system and the activities that process this information.

Data-flow diagrams provide a graphical representation of the system that aims to be accessible to
computer specialist and non-specialist users alike. The models enable software engineers, customers
and usersto work together effectively during the analysis and specification of requirements. Although
this means that our customers are required to understand the modeling techniques and constructs, in
data-flow modeling only alimited set of constructs are used, and the rules applied are designed to be
simple and easy to follow. These same rules and constructs apply to all data-flow diagrams (i.e., for
each of the different software process activitiesin which DFDs can be used).

An example data-flow diagram

An example of part of a data-flow diagram is given below. Do not worry about which parts of what
system this diagram is describing — look at the diagram to get a fedl for the symbols and notation of
adata-flow diagram.

93

Data-Flow Diagrams

Figure6.1. An example data-flow diagram

PRl

Callate
foad

—
[~ Collated F ood

" Requirements \
i] Order
Supphy Order Supplies \ e by food
tequire
Supplier o lr .
query - 0od Dretail
Meangrdes T
Query Res porse
Mae | Payment
e :
Recsived orders : "\\ —
[ee] ooy | s
Dreliyery
\ L]
Driscrepansy
o — Matcheq orders Resolved sudars e notee
Newujordets Discrepancy
. uery
Raceie
Dreliveny [
Chedied
delivery
I
Crf‘ed‘ [Unmatohed— |
AL arders Query
discrepanoy
[iz maintaned &= part of the same system by the keepers. [3 needs to be maintaned in some sensible fashion

t sould be replaced bythek eepers a an exdernal enity:
then e annck delhered fam 3

As can be seen, the DFD notation consists of only four main symboals:

1. Processes— theactivitiescarried out by the system which use and transform informati on. Processes
are notated as rectangles with three parts, such as “ Order Supplies’” and “Make Payments® in the
above example.

2. Data-flows — the data inputs to and outputs from to these activities. Data-flows are notated as
named arrows, such as “Déelivery” and “Supply Order” in the example above.

3. External entities — the sources from which information flows into the system and the recipients
of information leaving the system. External entities are notated as ovals, such as “Supplier” in the
example above.

4. Datastores— where information is stored within the system. Data stores are notated as rectangles
with two parts, such as “ Supplier Details’ and “Orders’ in the example above.

Thediagrams are supplemented by supporting documentation including adata dictionary, describing

the contents of data-flows and data stores; and process definitions, which provide detailed
descriptions of the processes identified in the data-flow diagram.

The benefits of data-flow diagrams

Data-flow diagrams provide a very important tool for software engineering, for anumber of reasons:

» The system scope and boundaries are clearly indicated on the diagrams (more will be described
about the boundaries of systems and each DFD later in this chapter).

» Thetechnique of decomposition of high level data-flow diagramsto a set of more detailed diagrams,

provides an overall view of the complete system, as well as a more detailed breakdown and
description of individual activities, where thisis appropriate, for clarification and understanding.

Note

Use-case diagrams a so provide a partition of a software-system into those things which are
inside the system and those things which are outside of the system.

94

Data-Flow Diagrams

Case study

We shall be using the following case study to explore different aspects of data-flow modeling and
diagrams.

Video-Rental LTD case study

Video-Rental LTD is a small video rental store. The store lends videos to customers for a
fee, and purchases its videos from alocal supplier.

A customer wishing to borrow avideo provides the empty box of the video they desire, their
membership card, and payment — payment is always with the credit card used to open the
customer account. The customer then returns the video to the store after watching it.

If aloaned video is overdue by a day the customer's credit card is charged, and a reminder
letter is sent to them. Each day after that a further card is made, and each week a reminder
letter is sent. This continues until either the customer returns the video, or the charges are
equal to the cost of replacing the video.

New customers fill out a form with their personal details and credit card details, and the
counter staff give the new customer a membership card. Each new customer's form is added
to the customer file.

The local video supplier sends a list of available titles to Video-Rental LTD, who decide
whether to send them an order and payment. If an order is sent then the supplier sends the
requested videos to the store. For each new video a new stock form is completed and placed
in the stock file.

The different kinds (and levels) of data-flow
diagrams

Although all data-flow diagrams are composed of the same types of symbols, and the validation rules
arethe samefor all DFDs, there are three main types of data-flow diagram:

» Context diagrams— context diagram DFDs are diagrams that present an overview of the system
and its interaction with the rest of the “world”.

* Level 1 data-flow diagrams — Level 1 DFDs present a more detailed view of the system than
context diagrams, by showing the main sub-processes and stores of data that make up the system
asawhole.

* Leve 2 (and lower) data-flow diagrams — a major advantage of the data-flow modelling
technique is that, through a technique called “levelling”, the detailed complexity of real world
systems can be managed and modeled in a hierarchy of abstractions. Certain elements of any data-
flow diagram can be decomposed (“exploded”) into a more detailed model a level lower in the
hierarchy.

During this unit we shall investigate each of the three types of diagram in the sequence they are
described above. This is both a sequence of increasing complexity and sophistication, and also the
sequence of DFDs that is usually followed when modeling systems.

For each type of diagram we shall first investigate what the features of the diagram are, then we shall
investigate how to create that type of diagram. However, before looking at particular kinds of data-
flow diagrams, we shall briefly examine each of the symbols from which DFDs are composed.

Elements of data-flow diagrams

Four basic elements are used to construct data-flow diagrams:

95

Data-Flow Diagrams

® processes

data-flows

» datastores
o externa entities

The rest of this section describes each of the four elements of DFDs, in terms of their purpose, how
the element is notated and the rules associated with how the element relates to othersin a diagram.

Notation and software

A number of different notations exist for depicting these elements, although it is only the
shape of the symbols which vary in each case, not the underlying logic. This unit uses the
Select SSADM notation in the description and construction of data-flow diagrams.

As data-flow diagrams are not a part of the UML specification, ArgoUML and Umbrello do
not support their creation. However, Dia is free software available for both Windows and
Ubuntu which does support data-flow diagrams.

Processes

Purpose

Processes are the essential activities, carried out within the system boundary, that use information.
A process is represented in the model only where the information which provides the input into the
activity is manipulated or transformed in some way, so that the data-flowing out of the process is
changed compared to that which flowed in.

The activity may involve capturing information about something that the organisation is interested
in, such as a customer or a customer's maintenance call. It may be concerned with recording changes
to this information, a change in a customer's address for example. It may require calculations to be
carried out, such as the quantity |eft in stock following the allocation of stock items to a customer's
job; or it may involve validating information, such as checking that faulty equipment is covered by
a maintenance contract.

Notation
Processes are depicted with abox, divided into three parts.

Figure 6.2. The notation for a process

13]

Add
Supplier

The top left-hand box contains the process number. This is simply for identification and reference
purposes, and does not in any way imply priority and sequence.

The main part of the box is used to describe the process itself, giving the processing performed on
the data it receives.

The smaller rectangular box at the bottom of the process is used in the Current Physical Data-Flow
Diagram to indicate the location where the processing takes place. This may be the physical location
— the Customer Services Department or the Stock Room, for example. However, it is more often
used to denote the staff role responsible for performing the process. For example, Customer Services,
Purchasing, Sales Support, and so on.

96

Data-Flow Diagrams

Rules

Therules for processes are:

* Process names should be an imperative verb specific to the activity in question, followed by a pithy
and meaningful description of the object of the activity. Create Contract, or Schedule Jobs, as
opposed to using very general or non-specific verbs, such as Update Customer Details or Process
Customer Call.

» Processes may not act as data sources or sinks. Data flowing into a process must have some
corresponding output, which is directly related to it. Similarly, data-flowing out of a process must
have some corresponding input to which it is directly related.

* Normally only processes that transform system data are shown on data-flow diagrams. Only where
an enquiry is central to the system isit included.

» Where aprocess is changing data from a data store, only the changed information flow to the data
store (and not the initial retrieval from the data store) is shown on the diagram.

» Where a process is passing information from a data store to an external entity or another process,
only the flow from the data store to the process is shown on the diagram.

Data-flows

Purpose

A data-flow represents a package of information flowing between two objects in the data-flow
diagram. Data-flows are used to model the flow of information into the system, out of the system, and
between elements within the system.

Occasiondly, a data-flow is used to illustrate information flows between two external entities,
which is, strictly speaking, outside of the system boundaries. However, knowledge of the transfer
of information between externa entities can sometimes aid understanding of the system under
investigation, in which case it should be depicted on the diagram.

Notation

Rules

A data-flow is depicted on the diagram as a directed line drawn between the source and recipient of
the data-flow, with the arrow depicting the direction of flow.

Figure 6.3. Notation for a data-flow

Supplier details

The directed line is labelled with the data-flow name, which briefly describes the information
contained in the flow. This could be a Maintenance Contract, Service Call Details, Purchase Order,
and so on.

Data-flows between external entities are depicted by dashed, rather than unbroken, lines.

Therulesfor drawing data-flows are:

* Information always flowsto or from a process; the other end of the flow may be an externa entity,
a data store or another process. An occasional exception to this rule is a data-flow between two
external entities.

97

Data-Flow Diagrams

» Data stores may not be directly linked by data-flows; information is transformed from one stored
state to another via a process.

* Information may not flow directly from a data store to an external entity, nor may it flow from an
external entity directly to adata store. This communication and receipt of information stored in the
system always takes place via a process.

* The sources (where data of interest to the system is generated without any corresponding input)
and sinks (where datais swallowed up without any corresponding output) of data-flows are always
represented by external entities.

» When something significant happens to a data-flow, as a result of a process acting on it, the label
of the resulting data-flow should reflect its transformed status. For example, “ Telephoned Service
Call” becomes “Service Call Form” once it has been logged.

Data stores

Purpose

A datastoreisaplacewheredataisstored and retrieved within the system. Thismay beafile, Customer
Contracts file for example, a catalogue or reference list, Options Lists for example, alog book such
as the Job Book, and so on.

Notation

Rules

A data storeis represented in the data-flow diagram by along rectangle, containing two locations.

Figure 6.4. Notation for a data store

Supplier

01 File

The small left-hand box is used for the identifier, which comprises a numerical reference prefixed
by aletter.

The main area of the rectangle is labelled with the name of the data store. Brief names are chosen to
reflect the content of the data store.

The rules for representing data stores are:

» One convention that could be used is to determine the letter identifying a data store by the store's
nature.

» “M” isused where amanual data store is being depicted.
e “D” isused whereit is acomputer based data store.
* “T” isused where atemporary data store is being represented.

» Data stores may not act as data sources or sinks. Data flowing into a data store must have some
corresponding output, and vice versa.

» Because of their function in the storage and retrieval of data, data stores often provide input data-
flows to receive output flows from a number of processes. For the sake of clarity and to avoid
crisscrossing of data-flows in the data-flow diagram, a single data store may be included in the
diagram at more than one point. Where the depiction of a data store is repeated in this way, this
is signified by drawing a second vertical line along the left-hand edge of the rectangle for each
occurrence of the data store.

98

Data-Flow Diagrams

External entities

Purpose

External entitiesare entities outside of the system boundary which interact with the system, in that they
send information into the system or receive information from it. External entities may be external to
the whole organisation — asin Customer and Supplier in our running example; or just external to the
application area where users activities are not directly supported by the system under investigation.
Accounts and Engineering are shown as external entities as they are recipients of information from
the system. Sales also provide input to the system.

External entities are often referred to as sources and sinks. All information represented within the
systemissourcedinitially from an external entity. Datacan leavethe system only viaan external entity.

Notation

External entities are represented on the diagram as ovals drawn outside of the system boundary,
containing the entity name and an identifier.

Figure 6.5. Notation for external entities

=

Supplier

Names consist of a singular noun describing the role of the entity. Above the label, alower case letter
isused as the identifier for reference purposes.

Rules

The rules associated with external entities are:

» Each external entity must communicate with the system in some way, thus there is always a data-
flow between an external entity and a process within the system.

» External entities may provide and receive data from a number of processes. It may be appropriate,
for the sake of clarity and to avoid crisscrossing of data flows, to depict the same external entity
at anumber of points on the diagram. Where thisis the case, aline is drawn across the left corner
of the ellipse, for each occurrence of the external entity on the diagram. Customer is duplicated in
thisway in our example.

Multiple copies of entities and data stores on the same
diagram

At times adiagram can be made much clearer by placing more than one copy of an external entity or
data store in different places — this can avoid atangle of crossing data-flows.

Where more than one copy of an external entity appears on a diagram it has a cut off corner in the
top left, such as below:

Figure 6.6. How to notate duplicated external entities

p

99

Data-Flow Diagrams

When more than one copy of adata store appears on adiagram it has a cut off left-side, such as below:

Figure6.7. How to notate duplicate data stores
Pl e
Context diagrams

What is a context diagram?

The context diagram is used to establish the context and boundaries of the system to be modelled:
which things are inside and outside of the system being modelled, and what is the relationship of the
system with these external entities.

A context diagram, sometimes called a level O data-flow diagram, is drawn in order to define and
clarify the boundaries of the software system. It identifiesthe flows of information between the system
and external entities. The entire software system is shown as a single process.

A possible context diagram for the Video-Rental LTD case study is shown below.

Figure 6.8. A context diagram for Video-Rental LTD

custormer
details - i

payrnent

T e T — T, | available T
/ { raturn ofweem et] wies L Tes
{ — turmn of vides.— g Yideo i . J
i Customer [——a . ' i Suppliar
%, membearship o —
- Y T —— - —) A e
Tk reambarshis Gard 1~ W O T -
/ | - e i R g it
|I wideo loan - / ~, P /
— . P

! L overdug c—o——— “
rerninder { vidaos
L request for f

wideo

The process of establishing the analysis framework by drawing and reviewing the context diagram
inevitably involves some initia discussions with users regarding problems with the existing system
and the specific requirements for the new system. These are formally documented along with any
specific system requirements identified in previous studies.

Having agreed on the framework, the detailed investigation of the current system must be planned.
This involves identifying how each of the areas included within the scope will be investigated. This
could be by interviewing users, providing questionnairesto users or clients, studying existing system
documentation and procedures, observation and so on. Key users are identified and their specific roles
in the investigation are agreed upon.

Constructing a context diagram

In order to produce the context diagram and agree on system scope, the following must be identified:
» external entities

+ data-flows

Y ou may find the following steps useful:

1. Identify data-flows by listing the major documents and information flows associated with the
system, including forms, documents, reference material, and other structured and unstructured
information (emails, telephone conversations, information from external systems, etc.).

2. Identify external entities by identifying sources and recipients of the data-flows, which lie outside
of the system under investigation. The actors an any use case models you have created may often
be external entities.

100

Data-Flow Diagrams

3. Draw and label a process box representing the entire system.
4. Draw and label the external entities around the outside of the process box.

5. Add the data-flows between the external entities and the system box. Where documents and other
packets of information flow entirely within the system, these should be ignored from the point of
view of the context diagram — at this stage they are hidden within the process box.

This system boundary and details depicted in the context diagram should then be discussed (and
updated if necessary) in consultation with your customers until an agreement is reached.

Having defined the system boundary and scope, the areas for investigation will be determined, and
appropriate techniques for investigating each areawill need to be decided.

Level 1 data-flow diagrams

What is a level 1 DFD?

As described previously, context diagrams (level 0 DFDs) are diagrams where the whole system is
represented as a single process. A level 1 DFD notates each of the main sub-processes that together
form the complete system. We can think of a level 1 DFD as an “exploded view” of the context
diagram.

A possible level 1 DFD for the Video-Rental LTD case study is as follows:

Figure6.9. A level 1 DFD for Video-Rental LTD

-
Vak
..... 7 nsteap | J—————ustorner
rnembership card ,J Custornar) details
. Qe A
e ~
e N
il =, custormer — A
e y details e i .
;K/] recquest for | v —_— create | i Supplier
y Customer j——""500 0 ' —— revy ' o e
' b 'c =] J"{_h' = custorner | weailsbie -
Hle U titles
1 ;
- /
A o /
A1 wvidess
c £ apuirahased
o P
stock A T e T
control "—"‘efder______h ’d k
ovardus 7| A = (Supplier)

=) A \ . e -,
inde f P . P y
remmd_r : _/ f iterrn ’_?t'.ll’ned y :pa.ﬂ-.m.—.t ey
J— . - X " avaerdue itarms Aawy vidao
TN P wideo lodn details '

K 1Y LI !
I ; | itern on loan

U custormer [} . D2

- ! '

Notice that the external entities have been included on this diagram, but outside of the rectangle that
represents the boundary of thisdiagram (i.e., the system boundary). It is hot necessary to aways show
the external entities on level 1 (or lower) DFDs, however you may wish to do so to aid clarity and
understanding.

Wecan seethat onthislevel 1 DFD thereareanumber of datastores, and data-flows between processes
and the data stores.

It isimportant to notice that the same data-flows to and from the external entities appear on thislevel
1 diagram and thelevel 0 context diagram. Each time a processis expanded to alower level, the lower
level diagram must show all the same data-flows into, and out of the higher level processit expands.

Constructing level 1 DFDs

If no context diagram exists, first create one before attempting to construct the level 1 DFD (or
construct the context diagram and level 1 DFD simultaneously).

The following steps are suggested to aid the construction of Level 1 DFD:

101

Data-Flow Diagrams

1. Identify processes. Each data-flow into the system must be received by a process. For each data-
flow into the system examine the documentation about the system and talk to the usersto establish
aplausible process of the system that receives the data-flow. Each process must have at least one
output data-flow. Each output data-flow of the system must have been sent by a process; identify
the processes that sends each system output.

2. Draw the data-flows between the external entities and processes.

3. ldentify datastores by establishing where documents/ data needsto be held within the system. Add
the data stores to the diagram, labelling them with their local name or description.

4. Add data-flows flowing between processes and data stores within the system. Each data store must
have at least one input data-flow and one output data-flow (otherwise datamay be stored, and never
used, or astore of datamust have comefrom nowhere). Ensure every datastore hasinput and output
data-flowsto system processes. Most processes are normally associated with at |east one data store.

5. Check diagram. Each process should have an input and an output. Each data store should have an
input and an output. Check the system details so see if any process appears to be happening for no
reason (i.e., some “trigger” data-flow is missing, that would make the process happen).

Decomposing diagrams into level 2 and lower
hierarchical levels

What is a level 2 (or lower) DFD?

We have already seen how alevel O context diagram can be decomposed (exploded) into a level 1
DFD. In DFD modeling terms we talk of the context diagram asthe “ parent” and the level 1 diagram
asthe*“child”.

This same process can be applied to each process appearing within a level 1 DFD. A DFD that
represents a decomposed level 1 DFD process is called alevel 2 DFD. There can be alevel 2 DFD
for each process that appearsin the level 1 DFD.

A possible level 2 DFD for process “2: Loan of video” of thelevel 1 DFD is asfollows:

Figure6.10. A level 2 data-flow diagram for Video-Rental LTD

LN AT
P customer
membearship ..-ard-______h_ B L+~ datails
I I validate i
s o] custormar return of video
L Customer [e = ! P
A v | restack
— io@n permission | 100 4 remihder
S / £
A vibao loan e e retlined !
t_/ R e — lemue 7 process
y Customer vidao / Iat.er
S L ~— o A ’I(return 4
payment / e it
itarm an loan § cuerdu® items

L

T
mal BIOT

file

Note, that every data-flow into and out of the parent process must appear as part of the child DFD.
The numbering of processes in the child DFD is derived from the number of the parent process — so
all processes in the child DFD of process 2, will be called 2.X (where X is the arbitrary number of
the process on the level 2 DFD). Also there are no new data-flows into or out of this diagram — this
kind of data-flow validation is called balancing.

Look at the rectangular boundary for this level 2 DFD. Outside the boundary is the external entity
“Customer”. Also outside the boundary are the two data stores — although these data stores are inside
the system (see the level 1 DFD), they are outside the scope of thislevel 2 DFD.

102

Data-Flow Diagrams

Constructing level 2 (and lower) DFDs — functional
decomposition

The level 1 data-flow diagram provides an overview of the system. As the software engineers
understanding of the system increases it becomes necessary to expand most of the level 1 processes
to asecond or even third level in order to depict the detail within it. Decomposition is applied to each
processon thelevel 1 diagram for which thereisenough detail hidden within the process. Each process
on the level 2 diagrams also needs to be checked for possible decomposition, and so on.

A process box that cannot be decomposed further is marked with an asterisk in the bottom right hand
corner. A brief narrative description of each bottom-level process should be provided with the data-
flow diagrams to complete the documentation of the data-flow model. These make up part of the
process definitions which should be supplied with the DFD.

Each process on the level 1 diagram isinvestigated in more detail, to give a greater understanding of
the activities and data-flows. Normally processes are decomposed where:

» There are more than six data-flows around the process

e The process name is complex or very general which indicates that it incorporates a number of
activities.

The following steps are suggested to aid the decomposition of a process from one DFD to a lower
level DFD. Asyou can seethey are very similar to the stepsfor creating alevel 1 DFD from a context
diagram:

1. Make the process box on the level 1 diagram the system boundary on the level 2 diagram
that decomposesit. Thislevel 2 diagram must balance with its “ parent” process box — the data-
flows to and from the process on the level 1 diagram will all become data-flows across the system
boundary on the level 2 diagram. The sources and recipients of data-flows acrossthelevel 2 system
boundary are drawn outside the boundary and labelled exactly as they are on the level 1 diagram.
Note that these sources and recipients may be datastoresaswell external entities or other processes
— thisisbecause adata storein alevel 1 diagram will be outside the boundary of alevel 2 process
that sends or receives data-flows to/from the data store.

2. ldentify the processesinside thelevel 2 system boundary and draw these processes and their
data-flows. Remember, each data-flow into and out of the level 2 system boundary should be to/
fromaprocess. Using the results of the more detail ed investigation, filter out and draw the processes
at the lower level that send and receive information both across and within the level 2 system
boundary. Use the level numbering system to number sub-processes so that, for example, process
4 onthelevel 1 diagram is decomposed to sub-processes 4.1, 4.2, 4.3 ... on the level 2 diagram.

3. ldentify any data stor esthat exist entirely within thelevel 2 boundary, and draw these data stores.

4. ldentify data-flows between the processes and data storesthat are entirely within the level 2
system boundary. Remember, every data store inside this boundary should have at least one input
and one output date flow.

5. Check the diagram. Ensure that the level 2 data-flow diagram does not violate the rules for data-
flow diagram constructs.

Making levels

For all systemsit isuseful to make at | east two levels— the context diagram and the level one diagram.
In fact, when in the earlier description of how to create DFDs you were told to start by identifying the
external entities and then to identify the inputs and outputs of the system, you were learning how to
produce the context diagram. The rest of the description was how to produce the level one diagram.

103

Data-Flow Diagrams

Whenever you perform data-flow modeling, start in exactly thisway, producing a context diagram and
then alevel onediagram. Of course, in producing thelevel one diagram you may realise you need more
inputsand outputs and possibly even more external entities. In this case, simply add the new data-flows
and the new entities to the level one diagram and then go back and add them to the context diagram
so that both diagrams still balance. Conversely, you may realise that some of the inputs and outputs
you originaly identified are not relevant to the system. Remove them from the level one diagram and
then go back to the context diagram and make it balance by removing the same inputs and outputs.

This constant balancing between diagramsis very common when doing levelling.

What about making morelevels? There aretwo reasonsfor making morelevels. Thefirst isthe obvious
one: you, as the software engineer, have not fully described a process to your satisfaction, so you
expand that process into a next level diagram. The new diagram is built in just the same way that a
level one is built from a context diagram only the new inputs and outputs are precisely to the data
flows to and from the process you are expanding.

The second reason is that you realise the diagram you are working on is becoming cluttered and
unclear. To simplify the diagram, collect together a few of the processes. Ideally, these processes
should be related in some way. Replace them with a single process and treat the original collection of
processes as alower level, expanding the new process. The inputs and outputs to the new process are
whatever inputs and outputs that are needed to make the diagrams balance. Remember to re-number
the old processes to show that they have been moved down alevel.

When doing this, if thereisadata-store which interacts with these processes, and only these processes,
then this too can be put on the lower level diagram.

Do not group random processes together to make a lower level diagram. This will only end up in
a tangle of arrows and unrelated processes. A good guide as to whether or not you have chosen a
sensible collection is try coming up with a new name for the replacement process. If you cannot do
this then you have probably made too general a grouping. Perhaps leave out one or two processes or
try adifferent grouping.

Always bear in mind that levelling is meant to simplify and clarify the diagrams, and if this cannot be
done then it may be best to leave the diagram as it is.

Balancing

The key to successfully levelling is to make the diagrams balance. For example, if a second level
diagram expands a first level process then al the inputs to the process must be inputs to the second
level diagram, and all the outputs from the process must be outputs on the second level diagram.
Moreover, there must be no other inputs and outputs. To be particular, all the inputs and outputs of the
system which appear on the context diagram must appear on the level one diagram and there should
be no other inputs and outputs on the level one diagram.

This does not mean there can be no changesto the higher levels of a set of diagrams. When producing
alower level diagram, the software engineer may realise that a new input is needed for the process to
be able to carry out itstask. In which case, the software engineer should add this data-flow as an input
and then add the input as a data-flow to the origina process. If needs be, this input may be added at
several levels higher up. The software engineer may add new outputs in the same way.

As long the diagrams aways balance, inputs and outputs can be added and removed wherever
necessary.

Numbering

Numbering in alevelled set of diagramsisimportant, asthe numbers help you to find your way around
the levels. It is easily described by example. Suppose Receive Order is the process numbered 3 on
the level one diagram (remember, numbers do not indicate any order, they are simply labels) and this
is expanded to alevel two diagram. The process numbers on the level two diagram will be 3.1, 3.2,

104

Data-Flow Diagrams

3.3 and so on. Suppose now that process 3.4 on the level two diagram is Register New Customer and
needs further expansion to alevel three diagram. The process numbers on this diagram will be 3.4.1,
3.4.2,3.4.3and so on. Therule used hereisthis: if X isthe number of the process you wish to expand,
then the numbers on the next level are X.1, X.2, X.3...

The same applies for data stores. Data stores that appear in alevel two diagram expanding a process
labelled 4 in the level one diagram will be numbered D4.1. D4.2, D4.3 and so on. Deeper levels will
be D4.1.1, D4.1.2, the numbering scheme being just the same as for processes.

Note though, it is not the data stores that are expanded. They may simply appear in the expansion
of aprocess.

Process descriptions

A software engineer may define a process where no further expansion is appropriate because there are
no separate sub-processes which may make up the original process. However, the software engineer
may still wish to describe the processin more detail asit isaparticularly difficult or tricky process. In
this case, the software engineer writes down a process description for the process. This can take any
form which the software engineer thinks appropriate. Traditiona flowcharts could be used or plain
English. More common is what is called structured English. Thislooks like English only it iswritten
more like a computer language. It used to avoid the problem that different people reading the same
piece of plain English may understand it in different ways.

Validation

It should be clear that producing data-flow diagrams can be complicated. A routine check using the
following questions should make sure that you find any simple mistakes. The first set of questions
refer to a single diagram, so if you have a set of levelled data-flow diagrams then these checks need
to be made for each diagram.

1. Isevery data-flow attached to a process at either the beginning or the end of the arrow?
2. Isevery data-flow labelled with a sensible noun?
3. Does every process have at least one input and at least one output?

4. |s every process named sensibly (no uses of words such as “process’ or “handle”) with an action
and what is acted upon? (The template is “ Do something to something”)

5. Isevery data store named with the type of thing it storesin the plural?

6. Where data stores and external entities have been shown several times on one diagram, do all
instances have a“ diagona” line?

7. Are there any data-flows which cross? If so, try and add more duplicate external entities or data
storesto avoid the crossing.

This second set of questions is specifically about levelling and so should be asked about the set of
diagrams asawhole.

1. Doall diagramsbalance? That is, where adiagram expands aprocessin ahigher level, aretheinputs
and outputsto the processidentical to theinputs and outputs on the expanded, lower level diagram?

2. Areadll externa entities shown on both the context diagram and level one diagram?
3. Areall of the processes and data stores numbered correctly?

All data-flow diagrams are an aid to communication between software engineers and their customers.
Although they may be correct and accurate, a messy or tangled data-flow model will reduce
communication as surely as along-winded text description. To avoid this, as the diagrams evolve, re-

105

Data-Flow Diagrams

draw them whenever they begin to get cluttered or have several corrections on them. A simple re-
arrangement of the components may be sufficient to greatly improve a diagram.

An example in constructing a data-flow
diagram

Just asfor logical data structures, to make a data-flow diagram we must analyse the requirements and
describethe system in terms of the components of data-flow diagrams. Several attemptswill be needed
before afinal and complete model of the system can be produced.

Unfortunately, there is no straightforward way to progress through developing a data-flow diagram.
We are aiming therefore to build a skeleton model on paper which we can then work with and develop
more fully. Each stage will be illustrated with examples from the following Estate Agent case study
(repeated from Chapter 4, An Introduction to Analysis and Design).

Estate Agency case study

Clientswishing to put their property on the market visit the estate agent, who will take details
of their house, flat or bungalow and enter them on a card which isfiled according to the area,
price range and type of property.

Potential buyerscompleteasimilar type of card whichisfiled by buyer namein an A4 binder.

Weekly, the estate agent matches the potential buyer's requirements with the available
properties and sends them the details of selected properties.

When asale is completed, the buyer confirms that the contracts have been exchanged, client
details are removed from the property file, and an invoice is sent to the client. The client
receives the top copy of athree part set, with the other two copies being filed.

On receipt of the payment the invoice copies are stamped and archived. Invoices are checked
on amonthly basis and for those accounts not settled within two months areminder (the third
copy of theinvoice) is sent to the client.

ldentify the system boundaries

The easiest place to making a data-flow model of a system isto identify what the external entities of
the system are and what inputs and outputs they provide. These give you the boundary between the
system and the rest of the world.

External entities must provideinputs or receive outputs. There are usually one or two which stand out
as obviously interacting with the system but not being part of the system. In the Estate Agent system,
Client and Buyer stand out as good candidates for external entities. Others may be harder to spot, but
once again consider nouns in the case study and add them to alist of possible external entities.

It may be tempting to add Estate Agent as an external entity asit obviously interacts with the system.
However, the estate agent is in fact part of the system in that he or she manipulates the data within
the system. Another way to think about it is that the estate agent will actually be replaced by the new
software system and so does not need to appear in the data-flow diagram.

From the list of candidates of external entities, determine what inputs they provide and what outputs
they receive. If a candidate entity does not seem to provide datainto the system or receive data from
the system then it is not an external entity and can be discounted (for now).

An external entity stands for the type of thing interacting with the system so all clients and all buyers
are represented by the Client and Buyer external entities.

Having identified the external entities there are two ways of progressing from here. Both are equally
sensible approaches and are covered in the next two subsections.

106

Data-Flow Diagrams

Follow inputs

Each input to the system must be received by a process. This gives us a natural way to start building
up the model.

First, take one of the more significant external entities and one of the main inputs it provides. In our
case, a Client providing Property Details is agood place to start. Draw an oval for the entity, a data-
flow for the input and a process which receives the input. From the case study there should something
that suggest what happens when this data comes in and this will be the name of the process. For
Property Details, the case study says that the estate agent enters the details on a card and files them.
So the process name should be either Record Details or Receive Details.

Every process must have at least one output, so, for the process in hand, consider what the outputs
must be and put labelled arrows on the diagram for the outputs. The datamust be changed by a process
and so should have a different name from the input data. Property Details are taken and recorded as
a property on the file so the output could be just something like Recorded Property or more simply,
Property.

Now start again only using this output as a new input. It must either go to another process, to a data
store or to an external entity. It should be clear from the case study what happens.

If anew processis needed then do the same again. Find a sensible name for the process using the case
study, determine and label the outputs and then follow the outpults.

If the data is stored then add a data store to the diagram, name it sensibly from the case study and
draw the output arrow going into the data store. Thisis what happens in Property and so we add the
data store Properties.

If the output isan output from the system then simply add the external entity which receivesthe outpuit.

When the data is finally output or comes to rest in a data store, go back and follow any of the other
outputs which may have been defined on the way. When they are exhausted, choose a new input and
follow that through in exactly the same way.

Follow events

Another way to approach building up a data-flow model is to consider what happens in the system.
The case study will outline anumber of events. There must be processes in the system which respond
to these events or even make them happen. | dentify these processes and then add the data inputs which
are used by the process and determine the outputs.

For example, in the estate agent example, there is the phrase, “When a sale is completed...”. Thisis
an event: a sale is completed. From the case study we see that lots of things then happen: the buyer
confirms exchange of contracts so thisis an input to some process; the client details are removed from
the fileand invoiceis sent out. Thisisthe process. A sensible name might be Record Sale or possibly
Receive Sale Confirmation. The data needed is the input from the Buyer and Client details which are
on file. This must mean there is a data store somewhere on the diagram holding this information. If
thereis not one there already then add it. And the output must be an invoice to the Client.

From here on the approach isthe same asfollowing inputs. For any new outputs, work out where those
outputs must go and if it isto a process follow them as if they were inputs to the new process.

Most processes can be found in the case study using either technique of following inputs or following
events. However, some processes are rel ated to temporal eventsand so can only befound by following
events.

Asthe name suggests, temporal events are eventswhich occur at specific times. They are not prompted
to happen by the arrival of new data, but rather because a certain time has been reached. These events
often appear in case studies beginning with phrases such as, “Once amonth...” or, “ At theend of every
day,...”. However, once these have been identified, producing the model by following this event is
exactly the same as for any other event.

107

Data-Flow Diagrams

In the estate agent system, there are two temporal events. there is a weekly matching of potential
buyers with properties; invoices and reminders are sent out on a monthly basis.

Though timeis the trigger the processes carrying out temporal events, timeis generally not shown on
the data-flow diagram. This is because the time aspect is often just a practical implementation rather
than rigid necessity. For example, the matching of buyers and properties at the estate agents need not
beweekly. It is probably done weekly so that it always gets done, and also so that it does not interrupt
the other daily business. With an automated system it may be possible to match buyers with properties
as soon as any new details on either arrive.

Wheretimeis crucial to aprocess, say accounting done at the end of afinancial year, then this can be
reflected in the name of the process. For example, “Calculate end of year profits’.

Fill in gaps

After building a model that handles each input or each event, it is worth going over the processes
defined so far.

For each process, ask the question, “Does this process have al the information it needs to perform
its task?’ For instance, if a process sends out invoices, does it have all the details of the invoice and
the address of where the invoice should go? If the answer is No, then add a data-flow into the process
which consists of the data needed by the process. If there are several, clearly distinct items of data
needed, then you may need an arrow for each item. Now try to identify the source of the data.

First, see if the data can be found aready inside the system, either on a data store or as a result of
aprocess. If not, it may be that the data can be obtained by processing some of the existing data in,
which case add a new process that takes the existing data and makes the data you require. Or, the data
may be available but from the case study it is clear that there is a time-lag between the process that
produces the data and the process which uses it. Simply add a data store where the data can reside
till it is needed.

If there is still no source for the data then it could be from an external entity. In which case, thisis
anew input to the system. It may not be explicitly mentioned in the case study, but if it is necessary
then it should be added. Having added the new input from the appropriate entity, go back and correct
the context diagram.

Thisisan important task. If thereis not enough datato support atask then the system will not function
properly. Of course, to be on the safe side, you could have al the data going to al the processes! But
thisis not really a solution because with alarge system this would be impractical.

Having examined all the processes, check that al the outputs have been generated. All of the inputs
should have been covered aready, but this does not mean that al the outputs have been produced. If
thereis still an output which does not appear on the diagram, see if there is a process where it could
come from. If thereis no sensible candidate, add a process and begin to work backwards. What inputs
does the new process need? Where do these inputs come from? This task is almost the same as the
one just described.

Any left over outputs must have comefrom aprocess. Outputs cannot comefrom datastoresor external
entities. If there is no sensible way to fit the output into the diagram then it may be that it is not a
sensible output for the system you are currently considering. Use the case study to confirm this.

Finally, check the data stores. Data must enter a data store somehow and generally data on a data
store is read. For each data store, identify when the store is either written or read by considering the
processes which may use the data. Also, use the case study to see that you have not missed any arrows
to or from a data store.

Repeat

By this stage, you will have considered all the inputs, all the outputs and produced afirst draft of the
data-flow model of the system.

108

Data-Flow Diagrams

Review the case study, looking for functionality described which is not performed by the model. In
particular, look for temporal events as these are sometimes hidden implicitly in the text.

Where necessary, add new processes that perform the omitted functions and use the method of
following eventsto work out their inputs and outputs. Fill in the gaps of the model in exactly the same
way as was done to produce the first attempt.

The model can be declared finished when you have considered every word in the case study and
decided that it is not relevant or that it isincorporated in some way into the model.

Review

Questions

Review Question 1

Describe the two main ways in which data-flow diagrams are used to manage the complexity of
systems.

A discussion of this question can be found at the end of this chapter.

Review Question 2
What are the four different system models which may include data-flow diagrams?

A discussion of this question can be found at the end of this chapter.

Review Question 3

What are the external entitiesin the following diagram Video-Rental LTD case study.

Figure 6.11. Find the external entities

BANK
ACCOUNT

ACCOUNT || AccoOUNT || AccouNT| | POSSIBLE | [ACCOUNT
OPENED LIFE CLOSURE | | RE-OPEN | |DELETION

R1

BALANCE account °f| _°
CHANGE RE-OPENED
Q1
(o] o
CREDIT DEBIT
Rz | DEATH
STRUCTURE
Q2:QUIT FROM ANYWHERE ON CTUSTOMER. CUSTOMER
CUSTOMER DEATH TO R2 DEATH DELETION

A discussion of this question can be found at the end of this chapter.

Review Question 4
What are the data-flows between Supplier and Video-Rental LTD case study in the above diagram?

A discussion of this question can be found at the end of this chapter.

Review Question 5

What are the processes in the above diagram Video-Rental LTD case study?

109

Data-Flow Diagrams

A discussion of this question can be found at the end of this chapter.

Review Question 6
What are the data stores in the context diagram Video-Rental LTD case study?

A discussion of this question can be found at the end of this chapter.

Review Question 7
What does the zero mean in the top left of the Video-Rental LTD process in the context diagram?

A discussion of this question can be found at the end of this chapter.

Review Question 8
Describe the first, top level DFD created for a system.

A discussion of this question can be found at the end of this chapter.

Review Question 9
Outline the main roles of Context Diagrams.

A discussion of this question can be found at the end of this chapter.

Review Question 10
Follow the suggested steps to create a context diagram for the Video Rental LTD case study.

A discussion of this question can be found at the end of this chapter.

Review Question 11

The following Estate Agency case study will be used in this, and some later, review questions. Thisis
the same case study as used in Chapter 4, An Introduction to Analysis and Design, but we will repeat
the text here for your convenience.

Estate Agency case study

Clientswishing to put their property onthe market visit the estate agent, who will take details
of their house, flat or bungalow and enter them on acard which isfiled according to the area,
price range and type of property.

Potential buyerscompleteasimilar type of card whichisfiled by buyer namein an A4 binder.

Weekly, the estate agent matches the potential buyer's requirements with the available
properties and sends them the details of selected properties.

When asale is completed, the buyer confirms that the contracts have been exchanged, client
details are removed from the property file, and an invoice is sent to the client. The client
receives the top copy of athree part set, with the other two copies being filed.

On receipt of the payment the invoice copies are stamped and archived. Invoices are checked
on amonthly basis and for those accounts not settled within two months areminder (the third
copy of theinvoice) is sent to the client.

Create a context diagram for this Estate Agency case study.

A discussion of this question can be found at the end of this chapter.

110

Data-Flow Diagrams

Review Question 12

What are the processesin the level 1 DFD for the Video Rental case study below?

EXTERNAL
EVENT

.
TIME-BASED EVENT >

A discussion of this question can be found at the end of this chapter.

IDENTIFY EVENTS THROUGH
THE DATA FLOW DIAGRAMS

Review Question 13
What are the data stores in the level 1 DFD above?
A discussion of this question can be found at the end of this chapter.
Review Question 14
What is meant by functional decomposition?
Under what conditions would you decompose a process on a Data-Flow Diagram?
A discussion of this question can be found at the end of this chapter.
Review Question 15
Decompose the Video Rental Level 1 DFD process “loan of video” into aLevel 2 DFD.
A discussion of this question can be found at the end of this chapter.
Review Question 16

Createalevel 1 DFD for the Estate Agency case study based on the context diagram from the previous
Review Question and the case study text.

A discussion of this question can be found at the end of this chapter.
Review Question 17

Create a Level 2 DFD for the “invoice client” process of the Estate Agency case study based on the
Level 1 DFD from the previous Review Question and the case study text.

A discussion of this question can be found at the end of this chapter.
Review Question 18

What are some of the specific benefits of Data Flow Models?

A discussion of this question can be found at the end of this chapter.
Review Question 19

Describe each of the main elements of Data-Flow Diagrams.

111

Data-Flow Diagrams

A discussion of this question can be found at the end of this chapter.

Review Question 20
Describe two of the points at which Data-Flow Diagrams are used during systems analysis

A discussion of this question can be found at the end of this chapter.

Review Question 21

The details of any level 2 or lower DFD could be displayed in alevel 1 DFD, so really there is no
reason not to model the entire systemin asinglelevel 1 DFD and avoid al the problems of balancing
and hierarchical process numbering and so on.

A discussion of this question can be found at the end of this chapter.

Review Question 22

Thereisno facility in the Data-Flow Modelling technique to model the order in which processes occur
and data flows. When creating an information system such time-based aspects of a system are just as
important as the processes and data themselves.

Why do you think that such a feature not been created as part of Data-Flow Diagrams, and how can
system designers get around this omission?

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

Decomposition — which divides complex information into manageable chunks using a hierarchical
tree structure. An overview of the problem is presented at the top level of the structure, while lower
levels provide increasing depth of detail for narrower areas of the problem

Abstraction — enables software engineers to concentrate on only one aspect of the system at a
time. Different models are used to model different perspective of the system. Data-Flow Diagrams
concentrate on information flows and the activities which process this information.

Discussion of Review Question 2

Current System Physical model —the physical processes and data-flows and data stores of the current
system may be modelled with DFDs (e.g. forms, pieces of paper, physical filesand filing systemsetc.)

Current System Logical model —thelogica processes and data-flows and data stores of the current
system may be modelled with DFDs (e.g. logical actions, logical collections of data, logical packages
of information flowing etc.)

Required System L ogical model —thelogical processesand data-flows and datastores of therequired
system may be modelled with DFDs as part of the specification of the required system

Required System Physical model — the physical processes and data-flows and data stores of the
required system may be modelled with DFDs as part of the design for the required system

Discussion of Review Question 3
There are two external entities shown in the above diagram (as ovals):
* Customer — a customer who can borrow videos

» Supplier —thelocal supplier

112

Data-Flow Diagrams

Discussion of Review Question 4
There are 3 data-flows shown in the above diagram (as named arrows):
» Availabletitles—from Supplier to Video-Rental LTD
* Order —from Video-Rental LTD to Supplier
* Videos—from Supplier to Video-Rental LTD

» Supplier —the local supplier
Discussion of Review Question 5

Thereisjust one process in the above diagram (a rectangle with three parts) - Video-Rental LTD

Discussion of Review Question 6

There are no data stores in the above diagram (rectangles with two parts)

Discussion of Review Question 7

Thetop left part of aprocess rectangleis the process number. For context diagrams, if any number at
all isused, it isusually zero. The zero indicates that this is the whole system, whereas in lower level
DFDs numberslike 1 and 3 indicate sub-processes of the whole system. This will become more clear
when you have progressed to understanding and creating hierarchical, levelled diagrams.

Discussion of Review Question 8

A Context diagram isthe first DFD to be created for a system. It represents a model of the system as
awhole (i.e. as a single process) and this systems interactions with external entities that are outside
the boundaries of the system, but which provide inputsto, and receive the outputs of the system being
modeled.

Context diagrams have the following features:
« only one process, representing the whole system
* they show no data stores

« they show all external entities with which the system exchanges data-flows.

Discussion of Review Question 9

Functional decomposition is the breaking down of higher level processes into their component sub-
processes, data-flows and data stores as lower level DFDs.

The condition to decide to decompose a processis any time where there is some detail ed aspect of the
system that is not modeled by the process description alone — i.e. when alower level DFD provides
something more to the software engineer, such as sub processes, additional data stores, and data-flows
that are used only for the process and which have not been modeled at the higher level DFD.

Discussion of Review Question 10

| dentify data-flows by listing the major documents and information flows associated with the system.

Y ou may find the use of the following kind of table is useful:

data-flow Sender Receiver

113

Data-Flow Diagrams

From the case study we can underline all potential data flows INTO AND OUT OF THE SYSTEM.
At this point look for any possible data-flows, we can change our minds at any time in the process of
creating a context diagram. We are not worried about data-flows that seem to be within the system at
present, so the sender and receiver should always be either an external entity, or the system itself.

Video-Rental LTD is a small video rental store. The store lends videos to customers for a fee, and
purchases its videos from alocal supplier.

A customer wishing to borrow a video provides the empty box of the video they desire, their
membership card, and payment — payment is always with the credit card used to open the customer
account. The customer then returns the video to the store after watching it.

If aloaned video is overdue by a day the customer's credit card is charged, and a reminder letter is
sent to them. Each day after that afurther chard is made, and each week areminder letter is sent. This
continues until either the customer returns the video, or the charges are equal to the cost of replacing
the video.

New customersfill out aform with their personal details and credit card details, and the counter staff
give the new customer a membership card. Each new customer's form is added to the customer file.

The local video supplier sends alist of available titles to Video-Rental LTD, who decide whether to
send them an order and payment. If an order is sent then the supplier sends the requested videosto the
store. For each new video anew stock form is completed and placed in the stock file.

data-flow Sender Receiver
video system customer
customer detail customer system
membership card customer system
membership card system customer
empty video box customer system
payment customer system
return of video customer system
credit card charge system customer (or credit card firm)
overdue reminder letter system customer
availabletitles supplier system
order system supplier
payment system supplier
reguested videos supplier system
stock form system system

Let us consider each data-flow in turn:

* video by customer when joining the store— thisisastrong candidate data-flow, though we might
name it 'video loan' or 'details of loaned video'

e customer details by customer when joining the store — thisis a strong candidate data-flow
» membership card issued to customer — thisis a strong candidate data flow

* membership card presented by customer when renting a video — this is a strong candidate
data-flow

» empty video box presented by customer when renting a video — thisisastrong candidate data-
flow, but perhaps should be call 'request for video' or something similar

114

Data-Flow Diagrams

» payment by customer when renting a video — thisis a strong candidate data flow

* return of video by customer — this is a strong candidate data flow, although the data might be
'returned video' or 'returned video details

« credit card charge by system — thisis a strong candidate data flow, but in fact we have aready
identified a payment by the customer (when renting a video) and we could just consider this to be
anther example of customer payment (for simplicity, although alternatively we could consider thisa
separate data-flow, the decision could be influenced on the sophistication of the systems processing
of payments, and might be delayed until more detailed DFDs are produced later in the analysis
procedure)

» overduereminder letter from system — thisis a strong candidate data flow
» payment by system for order — thisis a strong candidate data flow
« list of availabletitlesfrom supplier — thisisa strong candidate data flow

 therequested videos from supplier — this is a strong candidate data flow, although might be
called something like 'videos purchased'

* stock form — thislast data-flow iswithin the system, so thiswill not be used in the context diagram
but will probably appear in a more detailed DFD later

Y ou might have noticed

* ldentify external entities by identifying sources and recipients of the data-flows, which lie outside
of the system under investigation.

This step is easy if we have created a table like the above, since we can just create alist of all the
different entities:

* customer

« supplier (a candidate might be the credit card company, but we shall choose to consider the
customer to be charged in this case for simplicity)

Draw and label a process box representing the entire system.

Video
Rental
LTD

» Draw and label the external entities around the outside of the process box.

We just need to add external entity symbols for ‘customer' and 'supplier'.

video 4 ™y

l: customer ,.-I PeT':thI \ supplier

» Add the data-flows between the exter nal entities and the system box

we now need to add those data-flows earlier:

data-flow Sender Receiver

video loan system customer

115

Data-Flow Diagrams

data-flow Sender Receiver
customer details customer system
membership card customer system
membership card system customer
request for video customer system
payment customer system
return of video customer system
overdue reminder system customer
availabletitles supplier system
order system supplier
payment system supplier
requested video supplier system

We can do a quick check when we have created the diagram by counting the number of flows out
of, and into each entity.

From column "sender’ we can see there should be:

« 5data-flows out of the system

 5data-flows out of customer

» 2 data-flows out of supplier

From column 'receiver' we can see there should be;
7 data-flows into the system.
 3data-flowsinto customer

« 2 data-flows out of supplier

Our context diagram looks as follows:

custormer

details ———__ e mmmm ey
payrnant et i

P — ", | available e
’ \:-.__ FRbURR OF .—.d:-.j‘““_——:'i Video sy HHEs s \
T . 1
| custornar /"I:_h-‘r.er-mershlp car.:l_';__—:?-.’_f LT . /”;\
I Bty
.

- o
marmbership card .~
o

! video loan 0 ! .
i | overdue ——————— / ™~ /
rerminder { videas
L raquest for /
wideo

Discussion of Review Question 11

There are 3 data-flows shown in the above diagram (as named arrows):
* Create new customer
» Loan of video

» Stock control

Discussion of Review Question 12

There are 2 data stores:

116

Data-Flow Diagrams

» Stock file
» Stock file
Discussion of Review Question 13

First we start with the context diagram, since all external entities and data-flows on this diagram must
appear on our Level 1 DFD:

customner
detalis Frmmm ey
| payrmant) ' .

e —— 0 1 awvailable T
7 © Yy T ' o titles g = ™,
i v raturn of video- i -w___/
| Custorner : ! . Supplisr)

A mearnbership card tr—— g L
- o -~ . - erdar .
-~ - e | - -
7 ,'I riRmbershif ard - /;/ \\mﬁl_‘ /,_/ e
- ity nh i ity Vet
{ [—wvideo loan ! o ., P 'r'e"‘/
overdus —'_'_'_'_'_J :I -\\
rermindear ; widess
regquest for J'Il purchased
wideo

We can now create an 'empty’ Level 1 DFD with these entities and data-flows:

e \\ ,/)7 N ._;'” = y e
(Suslamer |} (' supsbar) Cuslamar Cusiamar
e g d *

— {\ Sy R ¢ S -
. _ mﬂ\:ﬂh(\.'sl-hpcalc mlu}-c,l\,h“ \riﬂeairl_ .
0 \\ " \ S)
/ LA
(' Sustamer 4 Susiame
'm_h___/\ P TN v
sustamar H : .:uau{u
P N <I= lats h : M?indqm\
. 1 : J
(Cusiamar v H rs (Suppliar)
— : : "
\-.\ ! : i
paymanl requizsl far 1 : T
vidaa ' : i :
\ \' ' £ Huppbie
, :
: ' —
ST = /
payanl
s
/
i

* ldentify processes. Each data-flow into the system must be received by a process. Each process
must have at least one output data-flow. Each output data-flow of the system must have been sent
by aprocess.

Now we need to identify the recipient and sending processes of the system for each data-flow. We
need to replace with a system process each occurrence of 'system' as the sender or recipient in the
table of data-flows created previously.

Possible processes have been inserted in the following table:

Data-Flow Sender Customer

video loan system - loan of video customer

customer details customer system - create new customer
membership card customer system - loan of video
membership card system - create new customer | customer

request for video customer system - loan of video
payment customer system - loan of video

return of video customer system - loan of video
overdue reminder system - loan of video customer

117

Data-Flow Diagrams

Data-Flow Sender Customer
availabletitles supplier system - stock control
order system - stock control supplier

payment system - stock control supplier

requested videos supplier system - stock control

» Draw the data-flows between the external entities and processes. After creating process boxes
and drawing the data-flows the diagram looks as follows:

e -

/) -
membe.-.grg:nrdmwm;.-(/cu“amar >7 c'i‘gr:r
\ - o /
~ ~
- k\—- ———————————————————————— 7 = .
T ! — = : (
/ -_ —
/ \ i i Supplier
(r:u;tqrﬁw/'—ureqﬁgzzfar} craate ! P .
A I rEwr available ™y
\\m_..._..._. \\:\"“\\ e custarnar ! titles /
. o A |
. payment\‘\ /:/ {
e ~— \ rd ,f
rearnb ars o .;;?3\\ I ’/ | videos
- = L.purchased
return of video — . H"‘; loan I Pai
of
wideo
ovardue 7 braer_ 7T =
rerminder | ; J
phvrnant Fupplier Y.

-~ |
- L I
= wideo loan
’ = e e
L
!

L Custorner

R

* ldentify data stores by establishing where documents / data needs to be held within the system.
Add the data stores to the diagram, labelling them with their local name or description.

There seem to be 2 main data stores required: a store of customer details ‘customer file' and a store
of which videos are in stock 'stock file'.

After adding these to the diagram looks as follows:

/-:’ s T
_ 4 - - | S sustorner
membership card % T /I details
— I — e
— v
I Y T
-~ LN i T i i \
{ Y eciuast For | create ' | Sueptier }
§ Customer ,'“——hle"":gg e —_ _ ey . AN
. A MISRE L gy |Ruslame custornar Bvallable g
R N N S e iR A hes [
S R e /
payrrant
N — N / /
membarship \B\x%—'— S videoes
Ao — ¥ Lpurchased
return of video I . | A’:
stock '
contral —t— -
4 Torde ST s T
N i)
............. Débmen?‘._\\Suppue.-
. - -

¥ b
y Custormer

» Add data-flows flowing between processes and data stores within the system. Each data store
must have at least one input data-flow and one output data-flow.

We can create atable to indicate which processes send and receive data from each data store:

Data store data-flow IN FROM data-flow OUT TO

customer file customer details FROM create|customer details TO loan of
new customer video

stock file new video details FROM stock | overdue items TO loan of video
control

118

Data-Flow Diagrams

After adding these data-flows the diagram looks as follows:

I S custormear
membership card 4, details
H-\-\-\"“-\\. — f.’/.
R -~
______) oI el P
72N ! SR : v
¥] N . create ' y Supplier
| Custorner ..'“——.'C"'“';zbt far e . A
. A ez custorner | svailatie “p—
R N ! ' titles
S e \: '
- /
AN / /
merbarship -;::"E\:.é—|— P L videos
e b veurchasad
| isan | 7
stock '
contral e e, -
A Torder ST s T
-2 74)
= lier
pavrnent b, THPPREr
T e 7
4

* check diagram No record seemsto be made of when avideo islent to acustomer — there ought to
be adata-flow from 'loan of video' to 'stock file' called something like 'item on loan'. Likewise when
anitemisreturned the detail s should berecorded in adata-flow called something like 'item returned'.

Apart from these extra two data-flows the diagram appears to be correct.

So our Level 1 DFD for the Video Rental case study is now:

- e rabmp | —————— custorner
rembership card l Custemer y d=tails

A

create .-I
ey
custormar
custornar
datails
videos
purchassd
I
rorder__ - A
Supplier J

Discussion of Review Question 14

Make the process box on the Level 1 diagram the system boundary on the Level 2 diagram that
decomposesit.

This gives us the following, “empty” Level 2 DFD:

e 0
ST Ve = ~
L customer } FEGNGL G | custemer }

. " payment owerdud -

—) reinder —
e P I
Vi \ Yz ~
Ve b £ ¥]
% ustorer faquast fo i Custorier |
S o video ideo loaM, A
o J—— S — i

P I
o ragurn of vigko itae on log
U cusemer | oz| T
%, il

. o iterf returned

v
_______ _rnernbership card -4-1:'{“- k‘.
o = -~ =7 overdue tems

v N details "

- II 7 \\

\ Customer ; custormer i | stook

= S =T o

e " | "| file [P"’_: file

119

Data-Flow Diagrams

Identify the processes inside the Level 2 system boundary and draw these processes and their data-
flows.

For each data-flow into and out of the process for which this Level 2 diagram is being created we
need to identify an appropriate sub-process to receive and send the data flows. The following table
lists each data-flow and suggests a suitable sub-process to receive/send the data-flow:

data-flow Sender Receiver

video loan loan of video - process loan customer

membership card customer loan of video - validate customer
reguest for video customer loan of video - validate customer
payment customer loan of video - issue video
return of video customer loan of video - restock video
customer details customer-file loan of video - validate customer
overdue items stock-file loan of video - processlatereturn
item returned loan of video - restock video stock-file

item on loan loan of video - issue video stock-file

overdue reminder loan of video - process|atereturn | customer

Adding these processes and data-flows to the diagram we get the following:

I _cusformnar BT
rhambarship “*"’HH_,____ =17 " details “o
P e ™ watidate 4, Gustomer
Pz j] custerner ‘ retyrn of video /4'-“‘--. e
L Custornaer L — sl
A tequest T -
S Yideo restack overdle
wideo ramihder
S -
i
P A vibieo loan ped| ; ==
/ " tRrn retirned
7. — T oome b process
ustomer [ety / ate
o T T A Ml
- A
payrent ferm on loan / overdue itams
7

Identify any data stores that exist entirely within the Level 2 boundary, and draw these data stores:
For this example there don't appear to be any “local” data stores

Identify data-flows between the processes and data stores that are entirely within the Level 2 system
boundary: Since there are no local data stores, there are no data-flows between processes and data
stores to be added.

Check the diagram: Upon checking the diagram, we find that the process “validate customer” has no
output data flows. Looking more closely we see that a plausible data flow out of “validate customer”
would be something like “loan permission”.

Upon adding this new data-flow the diagram looks as follows:

120

Data-Flow Diagrams

. custornar AT e T
membership bard Em| PPt -/7
p LT ¢
e walidate - Custermer
& A o customer return of vidéo /f"‘-\-_ o
U Custornar " I —
tequest fpr—" =
R video | resock overdiie
laan permission remihder
...... - : / .
A) = P
witeo loan .
e retimed
¢ —" D I procas
U customer L vided late
T - P ,'" return
T payrneit /
ftern on loan / ouerd rams
-

Discussion of Review Question 15

* ldentify data-flows by listing the major documents and information flows associated with the
system.

Y ou may find the use of the following kind of table is useful:

data-flow Sender Receiver

From the case study we can underline al potential dataflows INTO and OUT OF THE SY STEM.
At thispoint look for any possible data-flows, we can change our minds at any timein the process of
creating a context diagram. We are not worried about data-flows that seem to be within the system
at present, so the sender and receiver should aways be either an external entity, or the system itself.

Clients wishing to put their property on the market visit the estate agent, who will take details of
their house, flat or bungalow and enter them on a card which is filed according to the area, price
range and type of property .

Note

Potential buyers complete a similar type of card which is filed by buyer name in an A4
binder.

Weekly, the estate agent matches the potential buyer' requirements with the available
properties and sends them the details of selected properties.

When a sale is completed, the buyer confirms that the contracts have been exchanged,
client details are removed from the property file, and an invoice is sent to the client. The
client receives the top copy of athree part set, with the other two copies being filed.

On receipt of the payment the invoice copies are stamped and archived. Invoices are
checked on amonthly basisand for those accounts not settled withintwo monthsareminder
(the third copy of theinvoice) is sent to the client.

We can build atable of these data-flows, and the senders and receivers of these flows.

data-flow Sender Receiver
house details client system
buyer details buyer system
selected properties system buyer
contract buyer client
invoice system client

121

Data-Flow Diagrams

data-flow Sender Receiver
payment client system
reminder system client

Rejected candidates for data-flows include:

« the internal copies of the invoice - these data-flows do not go outside the system boundary so
will not be part of this context diagram (but may feature on a more detailed DFD later)

« the client details card is filed IN the system, so this internal data-flow will not feature on the
context diagram

It is worth noting that the exchange of contracts between client and buyer is not a data-flow into
or out of the system, but this data-flow between external entitiesis relevant so ought to be notated
on the context diagram.

* |dentify external entities by identifying sources and recipients of the data-flows, which lie outside
of the system under investigation.

This step is easy if we have created a table like the above, since we can just create alist of all the
different entities: client, buyer.

» Draw and label a process box representing the entire system:

Estate
Agency

» Draw and label the external entities around the outside of the process box. We just need to add
external entity symbolsfor ‘client’ and 'buyer'

Estate
Agency

» Add the data-flows between the external entities and the system box. We now need to add those
data-flows earlier. Our context diagram looks as follows:

Estate
pEymEnte T Agancy SElRCTAd
progarias
invoice
payment bilyer details
P e

house details

We can check the diagram quickly looking at the table:

122

Data-Flow Diagrams

data-flow Sender Receiver
house details client system
buyer details buyer system
selected properties system buyer
contract buyer client
invoice system client
payment client system
reminder system client

Client should send 2 data-flows, and receive 3.
Buyer should send 2 data-flows and receive 1.

System should send 3 data-flows and receive 3.

Discussion of Review Question 16

We should start with the context diagram, and create an ‘empty’ Level 1 DFD with all the same external
entities and data-flows:

Com g

1
house cletails aeslacted

u5> stails iﬁnvoice
./

* ldentify processes - Each data-flow into and out of the system must be received by /send by a
process. Now you need to identify the recipient and sending processes of the system for each data-
flow. We need to replace with a system process each occurrence of 'system' asthe sender or recipient
in the table of data-flows created previously. Possible processes have been inserted in the following

table:

data-flow Sender Receiver

house detail client system - record new client
buyer details buyer system - record new buyer
selected properties system - match properties buyer

contract buyer client

invoice system - invoice client client

payment client system - archive sale
reminder system - invoice client client

123

Data-Flow Diagrams

» Draw the data-flows between the external entities and processes. We can now add these
processes to the diagram, and connect the appropriate data-flows:

4 S S :
I
hjuse detail ! Buyer
f Ry | |
[recand i
: e walactdd |
/ : cliem | Drupemes: /
']
KLvkr datails T f
[-2 - |
atc
! riaard LLE iy d
propanies
: i v
/ i uyer 4 invoice |
! I
' payment | /
' = | LI |
: H‘“"H—-h.,_) - payme
' archive imuoice " rerninder!
i aale client)
I o A |
I
i

* ldentify data stores by establishing where documents / data needs to be held within the system.
Add the data stores to the diagram, labelling them with their local name or description. There are
two 'card’ stores (clients and buyers) so these should be data stores 'property file' and 'buyer details.
A file need to be kept for the invoice copies 'invoices. We can add these data stores to the diagram:

N
' D1] PropEny i
5l !
?l?ﬁ‘se detail - 2 1
L Eg | i
[recard i
' rig setectdd |
/ L cliemt | . buyer detalts properias |
I /
Euier details T o

! TalET . imooes
' match

propanies

! buyer g invoige |

'

' aymeant 1
: pay I 1] b7

L pasrma
' archive imraice =" ramindar!
anle clier .
. L

» Add data-flowsflowing between processes and data stores within the system. Each data store must
have at least oneinput data-flow and one output data-flow (otherwise data may be stored, and never
used, or astore of datamust have comefrom nowhere!). Ensure every datastore hasinput and output
data-flowsto system processes. Most processes are normally associated with at least one data store.

We can create atable to indicate which processes send and receive data from each data store:

Data store data-flow IN FROM data-flow OUT TO

property file property details FROM record | properties TO match properties
new client

buyer details buyer details FROM record new |desired property TO match
buyer properties

invoices invoice FROM invoiceclient |reminder TO invoice client

These data-flows can be added to the diagram:

124

Data-Flow Diagrams

o (I 5 NI R S O L0 S9N VNS NSO SO N | W SN S-S -
f @l]“'-L_ : r/ \:
-~ House detsilafy PO 1 X buyar 4
T ' T l - .IT::n':ii:y :’K . A
| recard . selacted: e
Wit properties
e ! client - T
7 S\ = L
O sujer A s | ok ¥ N
PR e D2 |buwer detalls properties N Gliari]
\.H____'_'_,_,-L-uyuzl details — A ,"}\ ahe S
i e A s o P -
i LA ey 1 —
; recard | buyer details dasired prpedy T
T ' i invaice |
P % buyar _J - }
C cliem Iy !
B Fe— I [—— ! P
e T ek i——- pay mer.t: I Y
archiva fﬂr:!lf-'_ie:—l—g._;/ P \
sale JII ., B A
ivoice T——

» Check diagram. We now can check the diagram for correctness, and find a process that has
no output data-flow 'archive sale’. An appropriate data-flow, into data store ‘invoices would be

something like 'record of payment

'. The consistent and balanced Level 1 DFD now looks asfollows:

A7

w §
¥V . 1 . ™,
5 client P, v y
M " hilse detaits fifGpasty ¢ buyer }
- reastd - details .-f\ =
LAl selected —
r,'mrt properies
- alism = i
d ™ L
I . — v "
E A properties . & }
e _~Buykr details P X olient F
e] s AT e
record | buyer detsils desiréd prpany o
2 = P | myaice |
7 ™ buyer 4
v = .
i ——"
cliant . —
L apayment m reminder— 4 irwoice ek T
— e | clian — pEyMEAT .
5 R iy,
T = ot client I,
! - o
imrgica e

However, there is another problem with the diagram — what causes the process 'invoice client' to

send an invoice or reminder to the

client? Theonly input to the process'invoice client' isa'reminder’

from the 'invoices' data store. The answer is that there are two things that trigger this process to

send a data-flow to the client:

 knowledge that sale has been completed

 knowledge that a payment on an issued invoice is overdue

The second is atime-based event, and not modelled explicitly in Data-Flow Diagrams. However,
the first indicates there should be a data-flow from an external entity to the system indicating that
contracts have been exchanged. If we look carefully at the case study again, we find that:

Note

When a sale is completed, t

he buyer confirms that the contracts have been exchanged,

client details are removed from the property file, and an invoiceis sent to the client.

This must mean that the buyer informsthe system that the saleis complete, so we must create anew

data-flow from 'buyer' to 'invoice

client' called something like ‘confirmation of sale'. (NOTE: Since

we are adding anew data-flow between the system and the external entities, we shall have to update
the parent diagram — if we forget we will be reminded by any CASE tool consistency checker).

We also notice there should be a
data store 'property fil€'.

data-flow of ‘client to delete’ from process 'invoice client' to the

Our Level 1 DFD now looks as follows:

125

Data-Flow Diagrams

raoard A

i 1
et . properies j 2

% 1

: buyer 4 buyar rsmzii.:_h:‘_.'n._i) ‘_‘__r.“ i \':—elei:led
[, Sikad prewrty 5 properies _——
/—'—'_—\—\.__Ul_-yIE| detznlls g '-\
e vl properties | ¥ iy
£ V! - L buyes
. biyer 3 piehel) e, PRODETTY - 5 R . g
L o b details ——)- g A
i conflrrmation
! oliamt 15 Sl
hewss datails dalete w_ @ET———&
2 SO, .5
Vo el y reminder e '
¢ 1 !
{ olient = payrnent i !
. i ale rarindat o gt
“—’ ; :“‘: /
[FAR— — IMvoice e - i
! record of musice——1"TY cliam
i

paEyIrient

Discussion of Review Question 17

» Make the process box on the Level 1 diagram the system boundary on the Level 2 diagram
that decomposesiit.

We should start with the Level 1 DFD, and create an 'empty’ Level 2 DFD with al the same external
entities and data-flows as the “invoice client” process.

This gives us the following, “empty” Level 2 DFD:

.,
£
pay e client
—eTEITITRT s o

* ldentify the processesinside the Level 2 system boundary and draw these processes and their data-
flows.

For each data-flow into and out of the process for which this Level 2 diagram is being created we
need to identify an appropriate sub-process to receive and send the data-flows. The following table
lists each data-flow and suggests a suitable sub-process to receive/send the data-flow:

data-flow sender receiver

invoice invoiceclient - raiseinvoice |client

payment reminder invoice client - process late|client
payment

reminder invoice client - process late|invoice client - process late
payment payment

invoice invoice client - raiseinvoice |invoices

confirmation of sale buyer invoice client - raise invoice

client to delete invoice client - ???? property file

Thelast row in the table above is interesting — there doesn't appear to be a sub-process inside the
“invoice client” process that creates the data-flow “client to delete”. Looking carefully at the Level
1 DFD we can see that the “archive sale” process is probably most appropriate to be sending the
property file the details of which client to delete, since it is this process that receives the payment

126

Data-Flow Diagrams

from the client. Therefore we need to delete this “ client to delete” data-flow from the Level 2 DFD,
and change the Level 1 DFD to have this data-flow from “achieve sale” to the “property file”.

Adding these processes and data-flows to the diagram we get the following:

4 Tineoice client

| Buyer Jre——— s orfifrn atian
\ g of sate -

" e
ingolee™ invalce
4 —

— payment” | e
rarmindar rarminder

 ldentify any data stor esthat exist entirely within the Level 2 boundary, and draw these data stores.
For this example there don't appear to be any “local” data stores

* Identify data-flowsbetween the processes and datastoresthat areentirely withinthe Level 2 system
boundary. Since there are no local data stores, there are no data-flows between processes and data
storesto be added.

» Check the diagram. There appear to be no inconsistencies with the diagram, so our final diagram
stays the same.

Discussion of Review Question 18

Data-Flow Diagrams concentrate on the flow and transformation of data. High level Data-Flow
Diagrams are decomposed to a set of more detailed diagrams.

Discussion of Review Question 19
» Processes—the activities carried out by the system.
* the datainputs and outputs to/from these activities.
» whereinformation is stored within the system.

* the sources of data-flows into the system, and recipients of information leaving the system.

Discussion of Review Question 20

Any two of the following would be fine:

 Current System Physical model —the physical processes and data-flows and data stores of the current
system may be modeled with DFDs (e.g. forms, pieces of paper, physical files and filing systems
etc.) [investigating current system]

» Current System Logica model —the logical processes and data-flows and data stores of the current
system may be modeled with DFDs (e.g. logical actions, logical collectionsof data, logical packages
of information flowing etc.) [investigating current system]

* Required System Logical model — the logical processes and data-flows and data stores of the
required system may be modeled with DFDs as part of the specification of the required system

* Required System Physical model — the physical processes and data-flows and data stores of the
required system may be modeled with DFDs as part of the design for the required system

127

Data-Flow Diagrams

Discussion of Review Question 21

While, theoretically, it would be valid to model an entire systemin asinglelevel 1 DFD, for any non-
trivial system such a diagram would fill an entire wall or floor of avery large room!

In the same way the a physical organisation is divided into departments or sections (or faculties for
a University), to gain the benefits of local organisation and ability to manage, so levelled DFDs
allow different logical functions of organisations to be abstracted and modelled together. So all sales
functions of an organisation can be modelled asasingle“sales’ process, and then described at alower
level in more detail.

Obviously amajor advantage of levelling isthat the complexity of any single diagram can berestricted
S0 as not to overwhelm the reader.

Discussion of Review Question 22

It should be remembered that each modelling technique (such as Data-Flow Diagrams and Entity-
Relationship Diagrams) only presents one aspect of the system — the model of the complete system
is formed when a number of different models are put together.

The three main traditional modelling techniques for systems analysis and specification are:
» Data-Flow diagrams

* Entity Relationship diagrams

 Entity Life histories

The third of these, Entity Life Histories (ELHS), is the modelling technique that represents those
aspects of a system that change over time. Entity Life Histories are introduced in alater unit, and play
an important role in relating the processes and data stores of DFDs with the logical data models of
Entity Relationship Diagrams.

Any particular modelling technique will have been designed to represent only certain aspects of a
system, since any non-trivial system would be much to complex to ever model with asingle technique
— any resulting diagram or set of diagrams would contain more information that would be usefully
understandable by users and system developers.

128

Chapter 7. Design
Objectives

At the end of this chapter you will have acquired practical and theoretical knowledge and skills about
modern software design. After successfully completing this module you should be able to:

« Describe the importance of abstraction and information hiding.

* Describe how abstraction and information hiding are used to handle changes in the software, and
in testing the software.

 Show how information hiding and abstraction relates to the software's architecture.
» Definewhat adesign patterniis.

» Give examples of various design classes.

Introduction

The last few chapters have introduced the concepts of analysis and design, aong with various
modelling techniques appropriate to these activities. We have also discussed some general topics,
such as ensuring that your models are readable, that they are produced iteratively and incrementally
to better accommodate change both in their requirements and in your own understanding of these
requirements. In this chapter we will be discussing some general design guidelines which you may
want to keep in mind when designing software systems. We will break these down into general areas
such as abstraction and architecture, each dealt with in their own section.

Abstraction

Abstraction is the activity of reducing the information in a problem to only that information which
is important to us. When we perform analysis and design we use many levels of abstraction in order
to make both the problem we are solving and the software we are developing understandable and
meaningful. At higher abstraction levels, the problem and the software are described in less detail and
more broadly. At lower abstraction levels, more details are given, and the software begins to take on
amore concrete form.

Ultimately, the software itself is the lowest level of abstraction that a software engineer will use. It
has the highest level of detail.

When performing the act of abstraction, software engineers attempt to create procedural and data
abstractions. Procedural abstraction is abstraction applied to functions, methods, and procedures
in general. For example, a function's name is an abstraction of the operations which the function
performs. The name, in other words, stands for those sequence of operations, and in our designs can
be used in its stead.

Data abstraction is abstraction applied to the data discussed in our software and system designs.
When we combine data to form an object or class, or combine objects to form a collection, we are
performing data abstraction.

Clearly, the software analysts and designers need to choose an appropriate level of abstraction to
operate at.

Architecture

Architecture refers to the software being developed. Specifically, the softwar €'s ar chitectureis the
structure of the software: the components that make up the software and how these components are
brought together.

129

Design

Through abstraction, the software's architecture can also be represented at different levels of detail.
At lower levels of abstraction, software architecture is concerned with classes, objects, and their
interrel ationships; at higher levels, the components we consider are the systems and subsystemswhich
make up the software.

Note

The software's architecture is one of the most important aspects of a software system. As
such, it should be considered early in the process of analysis and design. A poorly devel oped
architecture is a high-risk factor in software devel opment.

A number of models can be used to represent the software's architecture:
» Structural models represent the program's components (such as class diagrams).

» Framework models attempts to discover portions of the architecture that can be reused in similar
programs. These reusabl e portions are called frameworks.

» Dynamic models show how the architecture may change over time, especially when the software
needs to react to external events (such as sequence diagrams).

» Process models show the business / technical processes that the software captures (such as data-
flow diagrams).

 Functional models shows the software's functional hierarchy.

Patterns

Patter nsareknown solutionsto particular problems. Being known solutions, they can be useful guides
to generating designs of new systems. Importantly, a design pattern should allow a software engineer
to determine if the solution it specifiesis suitable to solving a particular problem.

Design patterns are important enough to warrant their own chapter. We will discussthem in far more
detail in Chapter 8, Design Patterns.

Modularity

When devel oping software, the softwareis broken into smaller and smaller components, into packages
of classes, then into the classes themselves, into the base data-types that make up these classes, into
the functions that they call, and so on.

This ability to divide a software system into discrete portions is called modularity, which is an
important component of abstraction and architectural design. Having modular software allowsit to be
more easily comprehended by the devel opersand our customers. However, modularity hasadrawback:
while increasing modularity can increase our understanding of the software, after a certain point the
softwarewill consist of enough modul esthat wewill again have aproblem seeing how they all interact.

Aswith any abstraction tool, it isimportant to choose the right level of modularity (the right level of
abstraction) for the software.

Modularised software is easier to develop and to test; it can more easily accommodate change, since
change should be restricted to only a small number of modules.

Note

When we use the term module, we are referring to any division in the software, such as a
package or aclass.

130

Design

Information hiding

Information hiding is an important aspect of modularity, and if you recall the definition of abstraction
(reducing information content to only what is important), information hiding is an important aspect
to the abstraction of software.

Specifically, consider that the final software system is the lowest level of abstraction. All of the
software's design details are present at this level. Information hiding allows us to hide information
unnecessary to a particular level of abstraction within the final software system, allowing for software
engineers to better understand, devel op and maintain the software.

We use software modul es to implement information hiding: the information contained in the modules
should be hidden from those the rest of the software system outside of the module, and access to
this hidden information should be carefully controlled. This alows us to maintain a higher level of
abstraction in our software, making our software more comprehensible.

If information hiding is done well, changes made to the hidden portions of a module should not affect
anything outside of the module. This allows the software engineers to more readily manage change
(including changes in the requirements).

Functional independence

Functional independence occurs where modules (such as a package or class) address a specific
and constrained range of functionality. The modules provide interfaces only to this functionality. By
constraining their functionality, the modules require the help of fewer other modulesto carry out their
functionality.

The functional independence of a module can be judged using two concepts: cohesion and coupling:
cohesion isthe degree to which a modul e performs only one function. coupling isthe degree to which
amodule requires other modules to perform its function.

Note

The goal of functional independence isto maximise cohesion while minimising coupling.

Having many functionally independent modules helps a software system be resilient to change:
because functionally independent modulesrely on fewer other modules, thereisless chance of changes
to these modules spreading to those which are functionally independent.

Functional independence makes modules easier to develop and test. Changes made to how they
perform their function are less likely to affect the software as awhole.

Functional independence is one of the goals of using information hiding and modularity. Consider
this: there can be no good information hiding if the software has not been broken into modules. If the
software has not been broken into modules, there can not ever be functionally independent modules. If
no information is hid from other modules of the software, if every module always depended on al the
others to perform its function, any change made to the software will always result in changes having
to be made elsewhere in the software in order to handle these changes.

Stepwise refinement

Stepwise refinement is the idea that software is developed by moving through the levels of
abstraction, beginning at higher levels and, incrementally refining the software through each level of
abstraction, providing more detail at each increment. At higher levels, the softwareismerely itsdesign
models; at lower levels there will be some code; at the lowest level the software has been completely
developed.

131

Design

At the early steps of the refinement process the software engineer does not necessarily know how the
software will perform what it needs to do. Thisis determined at each successive refinement step, as
the design and the software is elaborated upon.

Refinement can be seen as the compliment of abstraction. Abstraction is concerned with hiding lower
levels of detail; it moves from lower to higher levels. Refinement is the movement from higher levels
of detail to lower levels. Both concepts are necessary in developing software.

Refactoring

Refactoring is the activity of changing the software's internal structure without changing its external
behaviour. It is specifically concerned with improving the software's internal structure.

Refactoring provides higher quality software, and eases the work of the software engineer. During
refactoring, the software is examined for:

* Redundant code: portions of the software that perform the same function should be merged. Having
the functionality repeated in multiple areas makes the software harder to maintain.

» Unused design elements: if portions of the software are not being used, and removing it will not
change the software's behaviour, those portions should not be in the software.

* Poorly constructed data structures: these should be modified to improve, for instance, information
hiding and functional independence.

Aswith all of the design concepts we have discussed, refactoring should be done to make code easier
to understand, easier to develop and test, and easier to change. A good indication that you need to
refactor aparticul ar software applicationiswhen it hasbecome difficult to either add new functionality
toit, or tofix abuginit.

Note

Refactoring is not concerned with fixing bugs or adding functionality: it is concerned with
improving design conceptsin the software. This, however, should make it easier to find and
fix software bugs. Importantly, refactoring does not include changing the running time of an
application: aswith bug fixing or adding functionality, achangeto the running timeisclearly
changing the software's behaviour, and so not in the purview of refactoring.

Design classes

Asthe design progresses, classes can often befit into various roles. Five common roles are presented
below.

» User interface classes. Instances of these classes are used to provide al the interaction between
the user and the software. Often, interaction with the software occurs through the use of a metaphor
(think of the desktop metaphor, or the drawing board metaphor in Computer Aided Design software),
and user interface classes may represent elements of this metaphor.

» Domain classes. These are the classes that are used to implement some specific portion of the
problem domain that the softwareis attempting to solve. Classesthat represent books and catalogues
are examples of domain classes for software used in alibrary.

» Process classes. Are lower-level domain classes used to implement the software.
» Persistent classes. Are classes that represent data stores, and data that will persist even when the

program is not executing. They are useful for hiding the details of obtaining specific data from
databases and files.

132

Design

» System classes. Provide the functionality the software requires to operate and communicate with
the environment in which it will be functioning.

When used in software design, these classes can be represented using appropriately named stereotypes.
For example, user interface classes can be represented in class diagrams using the «user interface»
stereotype, persistence classes with «persistent», and system classes with «system». However, the
stereotypes should only be used if they will add useful meaning to the model. If knowing that a
particular class will be used in the user interfaceis not useful, do not add the stereotype.

These classes should have the following properties:
» Theclass should do al that its name implies, and do only what its name implies.
» The class and each of its method should provide only one way to do the same thing.

e The class should be functionally independent. That is, it should have high cohesion and low
coupling.

Review

Questions

Review Question 1
Why is the importance of abstraction?

Discussion of this question can be found at the end of this chapter.
Review Question 2

What is the main technique for implementing information hiding?

Discussion of this question can be found at the end of this chapter.

Review Question 3
Complete the following:

Refactoring is the activity of changing the software's [] without
changing its []. It is specifically concerned with improving the software's

[.
During refactoring, software is examined for three things, namely:
10]
2. []
3.1]

Discussion of this question can be found at the end of this chapter.
Answers

Discussion of Review Question 1

Abstraction allows us to focus on the relevant portions of a problem and our design. It allows us to
simplify our representation of how actions are carried out (procedures) and how data is represented
(such as by using classes and objects).

133

Design

Abstraction also alows us to represent our software at various levels of detail.

Discussion of Review Question 2

Software modules are the main tool used to implement information hiding. They segregate a portion
of the information contained within a software system from the rest of the system, and control access
to this information. Examples of software modules include C++ and C# namespaces, Java packages,
and classes and objects.

Discussion of Review Question 3

Refactoring isthe activity of changing the software'sinter nal structur e without changing itsexter nal
behaviour. It is specifically concerned with improving the software'sinternal structure.

During refactoring, software is examined for three things, namely:
1. Redundant code
2. Unused design elements

3. Poorly constructed data structure

134

Chapter 8. Design Patterns

Objectives

At the end of this chapter you should be able to:
» Describe the provenance of design patterns and explain their potential use in the design process.
 Select a specific design pattern for the solution of a given design problem.

 Create a catalogue entry for a simple design pattern whose purpose and application is understood.

Introduction to design patterns

The idea of a pattern

A bridge isastructure used for traversing a chasm. In its basic form it consists of a beam constructed
of rigid material, the two ends of the beam fixed at opposite ends of the chasm.

Figure8.1. A ssimple pattern for a bridge

beam

ASimple Bridge

The bridge will fulfil its function if the rigidity of the beam can support the loads which traverse it.
The beam's rigidity depends on the material of its construction and its span. In situations where the
heaviness of the load, the length of the span or the material of construction are likely to lead to failure,
the design of the bridge needs to be modified. More rigid materials are generally more expensive and/
or moredifficult towork with, so we shall ignore this possibility. Thisleavestwo possible approaches:
1. Increasing therigidity.

2. Decreasing the span.
Increasing the rigidity
Therigidity of the bridge structure can be improved by supporting the beam in a number of ways.

The girder

We can redistribute the beam's material to improveitsrigidity.

135

Design Patterns

Figure8.2. Thegirder

A Girder Bridge

Some of the force of the load on the lower beam is distributed by the cross-members resulting in a
compressive force in the upper beam. The (same) material of construction of the upper beam is better
able to support compressive forces along its length.

The arch

Some of the force of the load on the beam is distributed compressively along the material of the arch.

Figure8.3. Thearch

An Arch Bridge

The arch must be specially shaped so that the forces remain compressive along the length of the arch.
This shapeis called a catenary.

Suspension

The arch can be replaced by a cable which supplies the same support from above rather than below.

Figure 8.4. Suspension

A Suspension Bridge

The cable hangs in a catenary shape.

Decreasing the span

If the chasm isnot too deep it may be possibleto divideit into two “ sub-chasms’ by building asupport
inthe middle.

136

Design Patterns

Figure 8.5. Subdivision

Sub-dividing the Chasm

Alternatively, the edges of the chasm can be extended to reduce the length of the span.

Figure 8.6. Narrowing

v

Narrowing the Chasm

Some bridges are built by combining severa of these approaches into and elegant and functional
structure.

Figure8.7. The Forth Bridge

The Firth of Forth Bridge (taken from Encyclopedia Britannica, 1896)

The Forth Bridge is arailway bridge over the Firth of Forth river in Scotland.

Patterns

These are the patterns of bridge design. Even though we have no specialist knowledge of civil
engineering, we can see how and why they work, and when we look at abridge we can see the patterns
which were used to design it because they are built into its structure. Civil engineers, whose work
isto build such bridges, learn these patterns along with a great deal of specialised knowledge about
construction materials and very sophisticated analytical techniques which help them to make precise
predictions about the strength and suitability of different designs and materials before the bridges are
built. They use the patterns, either singly or in combination, when thinking about and discussing the
design of a particular bridge with other engineers, and they recognise the patterns used in constructing
the bridges of their fellow engineers.

The origins of design patterns

The ideas behind design patterns come not from civil engineers but from architects. Like civil
engineers, architects are concerned with designing structures to meet certain functional reguirements.
Individual buildings need to haveaform that helpsthem to fulfil their purpose. For instance, adwelling
for asingle family needs to have aliving area, a sleeping area and utility rooms, like akitchen and a
bathroom. A good dwelling design will place these together in such away that makes family living
convenient and pleasant. The sleeping area should be away from theliving areaso that it is quiet. The
bathroom will be directly accessible from many parts of the house, and not, for example, via one of
the bedrooms. The kitchen should be accessible from the living area but not from the sleeping area. In

137

Design Patterns

addition, the design will make efficient, effective and economic use of the materials of construction,
for example roofing, materials and plumbing.

In their working lives architects“ solve” these problems over and over again, in slightly different ways
and under different circumstances. However, the basic precepts of good dwelling design remains the
same, and they are different from the precepts of good office block design, or good hotel design or
good hospital design. The design patterns of architects are the solutions they have found to al these
various problems. Like civil engineers, architects can see the patternsin the buildings they design and
see examplesin the designs of other architects every timethey walk into ahouse or drive down astreet.

In the 1970's the architect Christopher Alexander wrote a series of books in which he first enunciated
the idea of the design pattern, and the ways in which patterns could be used to solve specific
architectural problems, and be combined to communicate design ideas amongst architects. He said:

“Each pattern is a rule which describes what you have to do to generate the entity
which it defines.”
— Christopher Alexander, The Timeless Way of Building

This definition gives a pattern two roles—firstly, as an abstract description of a solution to aparticular
type of problem; and secondly as a form which we can recognise within an “entity” which solves the
problem. Thus a suspension cableisaway of providing support to the beam of abridge, and when we
look at a bridge we can see whether or not it uses a cable for support.

Patterns in software design

Many aspects of the work of software engineers have parallels with the work of civil engineers and
architects. For instance:

 Software engineers design and construct software systems to meet certain functional requirements.

* These software systemsmay consist of anumber of software componentswhich must work together
in astructure to deliver the functions.

* The designers must concern themselves with effective, efficient and economic construction and
operation.

» There are precepts of good design for various types of software system.
 Software engineers solve variations of particular design problems over and over again.
However, there are also some stark differences.

 Although they may use other engineers' software, software engineers rarely have the opportunity
to observe other people's software designs in the same intimate way that an architect can when he
or she enters a building.

 Both civil engineering and architecture are very old disciplines stretching back thousands of years.
In contrast, software engineering is a new discipline, only afew decades old.

It is not surprising that software engineers would look to more mature design disciplines for some
assistance in defining what they were trying to do and in a search for techniques to help them to do
it. As explained in Chapter 2, Process and Model, the term software engineering itself was coined
to emphasise the belief that it took more than just skillful programming to produce a good piece
of software, and that careful consideration of requirements combined with systematic design and
development would help to bring software artefacts up to the same levels of reliability and elegance
as well-engineered “hardware”.

The work of Alexander was known to two software engineers, Ward Cunningham and Kent Beck,
when, in 1987, they visited a client to discuss the design of a user interface. They liked Alexander's
idea that a pattern is a symbolic way of describing a solution to a type of problem, and that a set of
patterns could provide alanguage for discussing the problem and considering various solutions. They
wanted the users of the proposed system to contribute to the design (another Alexandrian precept), so

138

Design Patterns

they invented asmall set of user interface patternsfor their users. They became convinced of the value
of theseideas and their relevance to software engineering when the users produced a very elegant and
efficient design using the simple pattern language.

Ward and Cunningham presented their conclusions at a software engineering conference (OOPSLA
'87) but few of the delegates were convinced. However, at about the same time, other workers in
software engineering were feeling their way towards an architectural view of software engineering
and by the 1991 OOPSLA conferencetheterm “design patterns’ wasin use. A community of software
engineers was gradually developing who were taking Alexander's work very seriously. Many of the
leading members of this community attended a meeting in 1993. During the meeting, they decided
to try designing a building according to Alexander's principles. Thisincluded laying out the physical
building plan, which they duly did on the side of the hill in Colorado where the meeting was being
held. Henceforth, they were known as the Hillside group.

Finally, in 1995, four of the main proponents of design patterns, E. Gamma, R. Helm, R. Johnson
and J. Vlissides published the first book on design patterns, Design Patterns; Elements of Reusable
Object-Oriented Software. Thisisstill perhaps the most authoritative book on the subject and much of
the ensuing material isdrawn from there. The four authors are known in the design pattern community
as“ The Gang of Four”.

Design patterns in object-oriented
programming

Definitions of terms and concepts

Object

The following is a summary of terms you were aready introduced to in the earlier chapters that will
be essential for the understanding of design patterns.

One of the main tasks of object-oriented design isto identify the classes which make up the software
system (see Chapter 5, Object-oriented Analysis and Design).

Not all objects that will be part of a system are identified early on in the development process, for a
number of reasons, including the chosen software process (such asincremental processes).

Interface

Class

The most important aspect of an object isits interface. An object's interface defines how the object
can be used, in other words, to what kind of messages it can respond. The parameters that need to be
passed with the message, if any, and the return type are called collectively the operation's signature.
The implementation details of these operations do not need to be known to the client.

Many operationswith the same name can have different signatures, and many operationswith the same
signature can have different implementations (using inheritance). These are forms of polymorphism.
This substitutablity — in other words, being able to substitute objects at execution time — is called
dynamic binding, and is one of the main characteristics of object-oriented software. Objects with
identical sets of signatures are said to conform to a common interface.

A class definition can be used as a basis for defining subclasses by means of inheritance. A subclass
possesses all the data and method implementations of the superclass together with additional data and
methods pertaining exclusively to objects of the subclass. In some cases, subclass data may shadow
superclassdatawith the sameidentifiers, or may override methodswith the same signature. An abstract
class is a class that can have no objects. Its main purpose is to define a common interface shared
by its subclasses. Sub-classes specify implementations for these the methods of an abstract class by
overriding them.

139

Design Patterns

Thereisadistinction between inheritance and conformance. In Java, thisisexplicitly defined by means
of extending a class through inheritance, and by implementing an interface to ensure conformance to
certain behaviour. An object's type is defined by its interfaces; this defines the messages to which it
can respond or, in other words, how it can be used. A classis atype, but objects of many different
classes can have the same type.

Scope of development activity: applications, toolkits,
frameworks

Software developers may find themselves involved in different sorts of software development
activities. Most developers work on applications designed to be used by non-specialist computer
users to perform tasks relevant to their particular work. However, some developers may be involved
in producing specialist software designed to help application software developers in the production
of their applications. The products of such developers are variously called toolkits or frameworks,
depending on the scope of their applicability.

When devel oping an applicationit isnecessary to consider reusing existing software, aswell asmaking
sure the newly developed software is easy to maintain and is itself reusable. Maintenance isin itself
aform of software reuse.

The smallest unit of reuse in object-oriented software is an object or class. When a class is reused
(e.g., refined by means of sub-classing) this is called white-box reuse. This is due to visibility: all
attributes and methods are normally visible to sub-classes. Thistype of reuseis considered to be more
complex for developers, because it requires an understanding of the implementation details of the
existing software. When reuse is by means of object composition, and we are only concerned with the
interfaces — how an object can be used — thisis called black-box reuse, because the internal details
of the object are not visible.

Black-box reuse has proved to be much more successful than white-box reuse. It is less complex for
developers and does not interfere with the encapsulation of objects and is therefore safer to use.

Toolkits are a set of related and reusable classes designed to provide ageneral purpose functionality.
Toolkits help with the development process without imposing too many restrictions on the design.
The packages in Java such asjava.net, java.util, and the java.awt are examples.

Frameworks represent reuse at a much higher level. Frameworks represent design reuse and are
partially completed software systems intended for a specific family of applications. One example of
aframework isthe Java Collections Framework.

Patterns, in contrast, are not pieces of software at all. They are more abstract, intended to be used for
many types of applications. A pattern isasmall collection of objects or object classesthat co-operate
to achieve some desired goal. Each design pattern concentrates on some aspect of a problem and most
systems may incorporate many different patterns.

Pattern classifications and pattern catalogue

Design patternsare based on practical solutionsthat have been successfully implemented over and over
again. Design patterns represent ameans of transition from analysis/design to design/implementation.

To help developers to use design patterns, catalogues of patterns have been created. Each catalogue
entry for a pattern should contain the following four essential elements:

 The pattern name, which identifies a commonly agreed meaning and represents part of the design
vocabulary.

» The problem or family of problems and conditions to which it may be applied.

» Thesolution, whichisageneral description of participating classes/objects and interfacestheir roles
and collaborations.

140

Design Patterns

» The consequences— each pattern highlights some aspect of the system and not others, so it isuseful
to be able to analyse benefits and restrictions.

Gamma et al classify design patterns into three categories according to purpose. The categories are
behavioural, creational and structural. Unfortunately the catalogue of patterns is not standardised,
which may cause some confusion. Thelevel of granularity and abstraction differs greatly from objects
whose only responsihility isto create other objects to those that create entire applications. Thereisno
guarantee that a suitable pattern will always be found. It also may be that several different patterns
could be used to solve a specific problem — in other words, a single pattern may not represent the

only solution, but a possible solution.

Table 8.1. Design patter ns according to Gamma et. al.

Behavioural Creational Structural
Interpreter Factory Method Adaptor (class)
Template Method Abstract Factory Adaptor (object)
Chain of Responsibility Builder Bridge
Command Prototype Composite
Iterator Singleton Decorator
Mediator Facade
Momento Flyweight
Observer Proxy

State

Strategy

Visitor

The Portland Pattern Repository

A large collection of design patterns is available at the Portland Pattern Repository [http://
c2.com/ppr/]. Thisrepository ishosted by Cunningham & Cunningham, the consultancy firm
of Ward Cunningham, one of the Gang of Four. The website is also famous for being the
web'sfirst wiki.

Behavioural patterns

Behavioura patterns are required when the operations that need to be performed cannot be achieved
without co-operation. Thus behavioural patterns concentrate on the way in which classes and objects
organise responsibilities in order to achieve the required interaction.

The Observer pattern is an example of a behavioural pattern that defines some dependency between
objects.

The Observer pattern

In some applications, two or more objects that are independent of each other must respond to some
event in synchrony. For example any Graphical User Interface (GUI) will respond to the click of a
mouse button, or keyboard, which will trigger the execution of an application or utility and redraw
the screen appropriately. The mouse click event will result in one or more objects responding. Each
object is otherwise independent. Each object is able to respond only to certain events.

Other typical examples of applications in which the Observer pattern could be used:

» Tointegratetoolsin aprogramming environment. For instance, the editor for creating program code
may register with the compiler for syntax errors. When the compiler encounters such an error, the
editor will beinformed and can scroll to the appropriate line of code.

141

http://c2.com/ppr/
http://c2.com/ppr/
http://c2.com/ppr/

Design Patterns

» To ensure consistency constraints, such as referential integrity for database management systems.

 In the design of user interfaces to separate presentation of data from applications that manage
the data. For example a spreadsheet object and a chart or a text report may all display the same
information resulting from an application’'s data at the same time in their different forms.

The problem

The important relationship that needs to be established is between a subject and an observer.
The subject may be observed by any humber of observers. The observers should be notified
when the subject changes state. Each observer will receive information concerning the
subject's state with which to synchronise, and to allow them to respond as required by the
application. The following summarises the conditions:

» The subject isindependent, and the observers are dependent.
A changeinthe subject will trigger changes in observers — of which there may be many.

» Theobjectsthat will be notified by the subject are otherwise independent. They only share
in some aspect of their behaviour.

Figure 8.8. Classdiagram of the Observer pattern

Sl et
= Dsnner Iaimaca=s
cEleIersaw)Er[' e
)
rcify Olbssrars()] J
" i

Concrete Subject

Haie Conoret e Olseneer

oetEtatel) chsaner dale

satChanged]) et)

The solution
Participating classes /objects:

Inthediagram the subject isshown asaclass. Subject has methodsfor attaching and detaching
observer objects. The methods are shown on the diagram as addObserver(), deleteObserver()
and notifyObservers().

Observer has an updating interface for objects that will be notified of changes in a subject,
here shown as an interface with the method update().

Concrete Subject, a subclass of Subject, contains its state (of interest to the observers), plus
operationsfor changing its state. Concrete Subject isableto notify its observerswhen its state
changes. On the diagram the attribute state, and methods getState(), setChanged() provide
this functionality, and the other methods are inherited from Subject.

Concrete Observer maintainsareferenceto the Concrete Subject object, and astate that needs
to be kept consistent with the Concrete Subject. It implements the updating interface. On the
diagram the Concrete Observer is a class that implements the Observer interface. It supplies
the code for the update() method and has observerState to denote the data that needs to be
kept consistent with the Concrete Subject object.

Collaborations

The Concrete Observers objects register with the Concrete Subject object, using the
addObserver() method.

142

Design Patterns

When aConcrete Subject changes stateit notifiesthe Concrete Observer objects by executing
the notifyObservers() method.

The Concrete Observer object(s) obtain the information about the changed state of the
Concrete Subject and execute the update() method.

Consequences

The advantage of the pattern is that the Subject and Observer are independent of each
other, and the subject does not need to know anything about the handling of the notification
by the observers (i.e., how update() works). This means that any type of broadcasting
communication could be implemented in this way.

Creational patterns

Creationa patterns handle the process of object creation. These patterns may be used to provide for
more reusable designs by placing the emphasis on the interfaces and not the implementation. The
abstract factory isan example of acreational pattern that can be used to make objects more adaptable,
in other words:

* Lessdependent on specific implementations.
» More amenable to change and customisation, easier to change the objects themselves.

 Lessnecessary to change the applications that use the objects.

Abstract factory pattern

The abstract factory pattern makes the system independent of how objects are created, composed and
represented. It should be used whenever the type or specific details of the actual objects that need to
be created cannot be predicted in advance, and therefore must be determined dynamically. Only the
required behaviour of the objects is specified in advance. The information that can be used to create
the object would be based on data passed at execution time. Examples of applications of the pattern:

* To customise Windows, Fonts, and so on, for the platform on which the application will run so as
to ensure appropriate formatting, wherever the application is deployed.

» When the application specifies al the required operations on the objectsit will use, but their actual
format will be determined dynamically.

» Tointernationalise user interfaces (e.g., to display al thetext in alocal language, to customise the
date format, to use local monetary symbols).

The problem

The application should be independent of how its objects are created and represented.
It should be possible to configure the application for different products/platforms. The
application defines precisely how the objects are used (i.e., their interfaces).

The solution
Participating classes/objects

Abstract Factory class will contain the definition of the operations required to create the
objects, createProductA(), createProductB().

Concrete Factory implements the operations createProductA (), createProductB(). Only one
Concrete Factory is created at run time which will be used to create the product objects

AbstractProduct will declare an interface for the type of product object for example a
particular type of GUI object: Label or Window.

143

Design Patterns

ProductAwill definethe object created by the Concrete Factory 1, implementing the Abstract
ProductA interface.

Client Application uses only the interfaces from the Abstract Factory and Abstract Product
classes.

Figure 8.9. Classdiagram for the Abstract Factory pattern

[e— ackory - Client Application
| ereateroduciAf

| createProductB) | Ahstract Procduct

Conorate Fact ory)

CreateFToclict A Prociuct A | Frodudt B
createProductBd)

Consequences

Different product configurations can be used by replacing the Concrete Factory an
application uses. Thisisabenefit and liability, becausefor each platform or family of products
anew Concrete Factory subclass needs to be defined. However, the changes will be broadly
restricted to the definition of subclasses of Abstract Factory and Abstract Product, thus
confining the changes to the software to well documented |ocations.

Structural patterns

These patterns deal with the composition of complex objects. Similar functionality can be often
achieved by using delegation and composition instead of inheritance. An example of a structural
pattern is the composite pattern. In the Java API, this pattern is used to organise the GUI using AWT
objects and layout managers.

Composite pattern

The pattern involves the creation of complex objects from simple parts using inheritance and
aggregation relationships to form treelike hierarchies.

The diagram shows the composite pattern as a recursive structure where a component can be either a
leaf (which has no sub-components of its own) or a composite (which can have any number of child
components). The component class defines a uniform interface through which clients can access and
mani pulate composite structures. In the diagram thisis represented by the abstract method operation().

Figure 8.10. Class diagram of the Composite pattern

Camponent
Client Application {abstract)
 ——

operation(}

Leaf Conrposite
Cperation]) cparatlon

The problem

Complex objects need to be created, but the composition and its constituent parts should be
treated uniformly.

144

Design Patterns

The solution
Participating classes/objects

Component should declare the interface for the objects in the composition, as well as
interfaces for accessing and managing its child components.

Leaf represents objects that have no children, and defines behaviour for itself only.

Composite will define behaviour for components with children, and implements the child
related interfaces.

Client Application manipul ates objects through the component interface using the operation()
method. If the object to bemanipulated isaLeaf it will be handled directly, if itisaComposite,
the request will be forwarded to the child

Consequences

The pattern enables uniform interaction with objects in a composite structure through the
Component class.

Defines hierarchies consisting of simple objects and composite objectswhich can themselves
be composed and so on.

Makesit easier to add or remove components.

How to use a design pattern

Consult design pattern catalogues for information (such as the Portland Pattern Repository,
discussed earlier). You may find an example or description that may suggest the pattern is worth
considering.

Try to study the suggested solution in terms of participating objects/classes, conditions, and
descriptions of the collaborations.

If the examples of these patterns are part of a toolkit, it may be useful to examine the available
information. java.util supports the Observer pattern, for example.

Give participant objects names appropriate for your application context.

Draw a class diagram showing the classes, their necessary relationships, operations and variables
that are needed for the pattern to work.

Modify the names for the operations and variables appropriately for your application.
Try out the pattern by testing a skeleton example.
If successful refine and implement it.

Consider alternative solutions.

Patterns in Java

Some design patterns generally recognised as common solutions to specific problems have been
adopted as part of the Java JDK and Java API. A sample of these design patterns will be analysed
here in greater detail.

The Observer pattern in Java

In Java, the Observer pattern is embodied by the Observer interface and the Observable class which
are part of the java.util package.

145

Design Patterns

Any object that needs to send a notification to other objects should be sub-classed from class
Observable, and any objects that need to receive such notifications must implement the interface
Observer.

Table 8.2. Observable class methodsin java.util.package

Observable M ethods Description

addObserver(Observer 0) Add the object passed as an argument to the
internal record of observers. Only observer
objectsintheinternal record will be notified when
achange in the observable object occurs.

deleteObserver(Observer 0) Deletes the object passed as an argument form the
internal record of observers.

deleteObservers() Deletes all observers from the internal records of
observers.

notifyObservers(Object arg) Call the update() method for al the observer

objects in the internal record if the current object
has been set as changed. The current object is set
as changed by calling the setChanged() method.
The current object and the argument passed to the
notifyObservers() method will be passed to the
update() method for each Observer object.

notifyObservers() Same but with null argument.

countObservers() The count of the number of observer object for the
current object returned as an int.

setChanged() Sets the current object as changed. This

method must be caled before calling the
notifyObservers() method.

hasChanged() Returns true if the object has been set as
“changed” and false otherwise.

clearChanged() Reset the changed status of the current object to
unchanged.

addObserver() method of the Observable class registers the Observers.

Each class that implements an Observer interface will have to have an update() method, and this
method will ensure that the objects will respond to the notification of a change in the Observable
object by executing the update() method:

public void update(Cbhservable, Object)
The Observable object can indicate that it has changed, by invoking at any time notifyObservers()

Each Observer is then passed the message update() where the first argument is the Observable that
has changed and the second is an optional one provided by the notification.

Example of Observer pattern using java.util
An electrocardiogram (ECG) monitor attached to a patient notifies four different devices:
» Remote Display for the physician, to allow them to adjust the configuration settings and treatment.
» Chart Recorder that will display the waveforms.
» Remote Display with a patient alarm.

* Instruments Monitor for the service personnel.

146

Design Patterns

Figure8.11. The ECG Observer

Olrservable
F Obserer inferface
acdd i server(y
clalat eObhsorven)
ki O ssrsrs)

[updatad |

ECG
t = TheCheanar
IMEsSApe |
broadoast Change() retum state | MEUTIE, Says
et Stabal) [N

Each of the devices will perform specific operations when the events for which they have registered
an interest take place. The ECG attached to the patient will notify them of changes, as they occur.
The skeleton solution presented below will display messages stating the specific tasks performed by
each Observer.

Definition of class ECG subcl assed from Coservabl e

fromwhi ch Cbservabl e objects will be created.

Denonstrates the use of nethods set Changed() which will change
the state of the ECG object, and notifyQbservers() which wll
broadcast the event to the regi stered objects.

import java.util.*;

public class ECG extends Cbservabl e

{
String nessage = "";
public void broadcast Change()
{
nmessage = "\tHeart Electrical Activity";
set Changed() ;
noti fyQoservers();
}
public String getState()
{
return nessage;
}
}
/Iclass
/ * s s ————————

TheCbserver. java

Definition of class TheCbserver from which Cbserver objects will
be created.

The class i nplements the Cbserver interface and thus nust define

147

Design Patterns

the nmet hod update() which will be executed when the objects of
cl ass TheCbserver are notified.

i mport java.util.*;
i mport java.io.*;

public class TheObserver inplenments Cbserver

{
String nane;
String says;
public TheCbserver (String name, String says)
{
t hi s. name = nane;
this.says = says;
}
public void update(oservable O OCbject 0)
{
Systemout.println(((ECG O .getState()+
"\n\t" + namre + " : " + says+ "\n");
}
}
/Iclass
/ * s —————————

PatternTest.]java
Definition of programto test the Cbserver pattern

An object of class ECG called ecg is created, as well an array
cal | ed observers containing the four TheQbserver objects.

These objects register with the observabl e object ecg using nethod
addQbser ver.

When the ecg net hod broadcast Change() is executed the observers
will be notified and update thensel ves.

i mport java.util.*;
public class PatternTest {

public static void main(String[] args) {
ECG ecg = new ECH);
TheCbserver[] observers
= { new TheCbserver ("Physician", "Adjust Configuration"),
new TheCbserver ("Renote Di splay", "Mnitor Details"),
new TheCbserver (" Chart Recorder", "Draw ECG WaveFor m')
new TheCbserver (" Servi ce Personnel ", "Mnitor Instrunents")};

148

Design Patterns

for (int i =0; i &t; observers.length; i++)
ecg. addObser ver (observers[i]);

ecg. br oadcast Change() ;

}
The Observer pattern as part of the Java API

An example of the application of the Observer pattern of the Java API is the Java model of
event handling using listeners. Graphical User Interface (GUI) components from the Java Abstract
Windowing Toolkit (AWT) such as buttons, text fields, sliders, check boxes, and so on, are
managed in this way. The observer objects implement a listener interface (e.g., the ActionListener,
WindowL istener, KeyListener etc.). When any of the components changes state, the listeners are
notified that a change has occurred. The listener decides what action should be taken as a result
of the change. To tell a button how the events it generates should be responded to, the button's
addActionListener() method is called, passing a reference to the desired listener. Every component
in AWT has one addX X X Listener() method for each event type that the component generates. When
a button with an action listener is clicked, the listener receives an actionPerformed() call which will
contain the instructions that need to be performed in response to the event. The actionPerformed()
method must be defined as part of implementing the listener interface

The Model-View-Controller pattern

This pattern is a specialised version of the Observer pattern, which was introduced in the Smalltalk
language as away of structuring GUI applications by separating the responsihilities of the objectsin
the system. The user interface consists of a View, which defines how the system should present this
information to the user, and a Controller, which defines how the user interacts with the Model, which
receives and processes input events. Systems analysis and design concentrates mainly on building the
model representing the main classes of the application domain and the information of interest will
be internally stored in object of the classes. The Model-View-Controller pattern makes it possible
to associate the model with many different view/controller pairs in a non-intrusive manner without
cluttering the application code. It isintroduced here becauseit can be easily applied to theway inwhich
Java applications using the java.awt can be structured. It provides away for providing the application
system model with auser interface. Thisis achieved by separating the responsibilities as follows:

The responsibilities of the Model are:

» To provide methods that enable it to be controlled.

» To provide amethod or methods to update itself, and if it is agraphical object, to display itself.
The Controller carries out the following series of actions:

» Theuser causes an event such as clicking the mouse over a button.

» Theevent is detected.

A method to handle the event is invoked.

* A message will be sent to the model.

The update method within the model will change the data within the model.
» A message will be sent to the view update the user interface, to, for example, redraw the image.
The View performs the following:

* Initially displays the model when the window is created, and every timeit isresized.

149

Design Patterns

» When the event handler detects a change (e.g., responds to a click of abutton) it sends a message
to redraw the screen.

» The View enables the updated information from the model to be displayed.

Abstract factory facilities in Java

To make the creational process more versatile, object-oriented language facilities that provide for
customisation should be used. The JDK has facilities to customise graphics and to internationalise
programs and applications.

Graphics related platform characteristics
One of the problems of having a portable Abstract Windowing Toolkit is that the appearance and
positioning of the objects may differ from one platform to another. To ensure that the graphical display
issimilar wherever the application may be ported, we should be able to adjust the View accordingly.

The ToolKit and FontMetrics classes may be used to help create a Concrete Factory that will create
the Concrete Product:

Figure 8.12. Java output of screen and font information

Sysinfo.java output from my machine

The ToolKit class provides information regarding screen resolution, pixels, available fonts, and
FontMetrics can help supply information concerning font measurements for every AWT component.
Below is a program listing showing how some screen and font information can be obtained.
Figure 8.12, “ Java output of screen and font information”, shows an example of some output obtained
from the program.

Sysinfo.java

program for finding out details of the display using the
java.awm Tool kit cl ass

The program creates a Tool kit class object theKit, and then uses
the Tool kit met hods:

get Def aul t Tool ki t, get ScreenResol uti on, getScreenSi ze and get Font Li st.

i mport java.awt.*;

public class Sysinfo

{

public static void main(String[] args)

{
Tool kit theKit = Tool kit.getDefaultTool kit();

Systemout.println("\nScreen Resolution: " +

150

Design Patterns

t heKit. get ScreenResolution() + " dots per inch");
Di mensi on screenDim = theKit. get ScreenSi ze();

Systemout.println("Screen Size: " + screenDimw dth

+ " by " + screenD m height +

pi xels ");

String nyFonts[] = theKit.getFontList();

Systemout.println("\nFonts available on this platform ");

for (int i =0; i &t; myFonts.length; i++)
System out. println(nyFonts[i]);

return,

}
}

Java facilities for internationalisation of applications (displaying all user visible text in the local
language, using local customs regarding dates, monetary displays etc.) are available from java.util
package using the ResourceBundle class and its subclasses.

Composite patterns in Java

HCI classes for creating GUI applications are used in almost every interactive application. Much of
these GUI classes adhere to some form of Composite pattern, and the Java AWT is no exception.
Here, containers are components which can hold other components. Each component knows how to
draw itself on the screen; containers, however, will defer some of their drawing functionality to the

components that they contain.

Figure 8.13. java.awt GUI components containersand layout managers

basa class for
ap plication windowes

Componsnts and Containers

Labe

Layout Managers

Description

FlowLayout

Places components in successive rows in a
container, fitting as many on each row aspossible,
and starting on the next row as soon as a row is
full. This works in much the same way as a text
processor placing words on aline. Its primary use
is for arranging buttons, although it can be used
with components. It is the default layout manger
for Panel and Applet objects

151

Design Patterns

Layout Managers Description

BorderLayout Places components against any of the four borders
of the borders of the container and in the centre.
The component in the centre fills the available
space. This layout manger is the default for
objects of the Window, Frame, Dialog, and
FileDialog classes

CardLayout Places components in a container, one on top of
the other — like a deck of cards. Only the “top”
component isvisible at any one time.

GradL ayout Places components in the container in a
rectangular grid with the number of rows and
columns that you specify.

GridBagL ayout This places the components into an arrangement
of rows and columns, but the rows and columns
can vary in length. This is a complicated layout
manager with a lot of flexibility for controlling
where components are placed in a container.

In Java, these are embodied by the AWT Component and Container class, and the layout manager
classes. A Window can be divided into Panels, and each Panel can be treated as an individual
component within another layout at a higher level.

Review

Questions

Review Question 1

How many of the different methods of managing heavy loads have been used in constructing the Firth
of Forth Bridge?

A discussion of this question can be found at the end of this chapter.

Review Question 2

What is the principal difference between the job of a software engineer and those of architects and
civil engineers?

A discussion of this question can be found at the end of this chapter.
Review Question 3

Explain the role of design patterns in object-oriented software devel opment.

A discussion of this question can be found at the end of this chapter.

Review Question 4
Place each of the following patterns in the category it belongs to according to “the gang of four”:
Patterns: Observer, Model-View-Controlled, Abstract Factory, Composite:
Category: Creational, Structural, Behavioural.

A discussion of this question can be found at the end of this chapter.

152

Design Patterns

Review Question 5
What are the four essential elements of a design pattern catalogue entry?

A discussion of this question can be found at the end of this chapter.

Review Question 6
What is meant by granularity?

A discussion of this question can be found at the end of this chapter.

Review Question 7
Give examples of white-box reuse and black-box reuse from the pattern examples.

A discussion of this question can be found at the end of this chapter.

Review Question 8
Compile ECG.java, TheObserver.java and TestPattern.java, then execute the TestPattern program.
1. Create anew directory in which to store thefiles. You may call the directory Activityl.
2. Copy al threefiles ECG.java, TheObservers.java and TestPattern.java
3. Compile the three files using the JDK command javac

4. Once the compilation is successful you should be able to execute the TestPattern application using
the command java Testpattern

Does the program output the messages in the order you have expected?

A discussion of this question can be found at the end of this chapter.

Review Question 9

Design asolution using the Observer pattern for the operation of dispensing cash by an ATM machine.
When a bank customer withdraws money from an ATM (Automatic Teller Maching), before the cash
is dispensed it is necessary to determine whether there are sufficient funds. If there are, then it is
necessary to instruct the machine to dispense the cash, to debit the customer's account and to log the
transaction for auditing purposes.

How would you use the Observer pattern to design a solution to this problem?

A discussion of this question can be found at the end of this chapter.

Review Question 10

Draw adiagram to represent the design pattern of a solution to the ATM operation of dispensing cash
using the Observer pattern. Y ou may use a CASE tool for the class diagram and include the outline of
the methods, data and messages required to make the pattern work. It would be useful if you put the
project in which the class diagram will be placed into a new directory.

A discussion of this question can be found at the end of this chapter.
Review Question 11

The code you are expected to write will be a skeleton for the Observer pattern with messages instead
of complex code to implement the operations. Compile the three parts of the program in the correct

153

Design Patterns

order. The Observable class, then the Observer and last the program. Y ou may use any version of Java
for this exercise. Follow the instructions similar to the ones given for Activity 1. It would be useful
to place al of your files for this exercise in anew directory.

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1
The Firth of Forth bridge uses three patterns which can be directly seen. These are;
* girders with cross-members,
» archesin acatenary shape,
* decreasing the span.

In addition some suspension support is provided 'from above' but thisis not strictly a catenary shape.

Discussion of Review Question 2

The main difference is that software engineers do not have the opportunity to see their and other
people's designs implemented visually.

Discussion of Review Question 3

Y our answer is expected to include some of the following:

Serve as exemplars to programmers, designers and architects, which they can quickly adapt for use
in their projects.

Emphasise solutions: discovering patterns that have been used before rather than inventing them.

Represent codified, distilled wisdom: solutions to recurring problems, if those solutions have well
understood properties.

Allow programmers and designers to program and design using bigger chunks; this also eases
those aspects that involve understanding an architecture; architectural reviews. Reverse engineering,
maintenance and system restructuring.

Aidin communicating among designers, between designers and programmers, and between a project's
team members and its non-technical members.

| dentify and name abstract, common themesin object-oriented design, themesthat have known qualify
properties.

Form a documented, reusable base of experience, which would otherwise be learnt only through an
informal oral tradition or through trial and error.

Provide a target for reorganisation of software because a designer can attempt to map parts of an
existing system to a set of patterns. If this mapping can be done, the complexity of the resulting
reorganised system will be less than the original version.

Discussion of Review Question 4
Behavioural: Observer, M-V-C

Creational: Abstract Factory

154

Design Patterns

Structural: Proxy, Composite

Discussion of Review Question 5

 The pattern name which identifies a commonly agreed meaning and represents part of the design
vocabulary.

» The problem or family of problems and conditions in which it may be applied.

» Thesolution which isageneral description of participating classes/objects and interfacestheir roles
and collaborations.

» The consequences - each pattern highlights some aspect of the system, and not others so it is useful
to be able to analyse benefits and restrictions.

Discussion of Review Question 6

Granularity usually refersto the size of the components you deal with. In this context it could be from
patterns that specify how a single object may be created, to patterns that will specify the structure of
awhole application.

Discussion of Review Question 7
For example, in the Observer pattern:

Concrete Observer is an example of black-box reuse because al the Concrete observer needs to do
isto implement the update() method.

The Concrete Subject is an example to white-box reuse, because it needs to know the details of its
super class Observable.

The Concrete Factory of the Abstract Factory pattern is an example of white box reuse. The way in
which the Client Application uses the Abstract Factory pattern is an example of black box reuse. Etc.

Discussion of Review Question 8

Compare this example with the Observer catalogue entry description, and follow the instructions on
how to use a design pattern before going on to do the next exercise.

Discussion of Review Question 9

This exercise will help you test your understanding of the Observer pattern. Y ou are expected to base
your answer on the given examples — to literally use the pattern. Using the CASE tool will help you
produce the documentation of your design in the standard format.

Discussion of Review Question 10

The purpose of this exercise isto use the Observer class and Observable interface from java.util and
to test some of the methods from the lecture notes. This will consolidate your understanding of the
use of this design pattern.

Discussion of Review Question 11

Writing portabl e software, and implementing dynamic binding of objectsin adistributed environment
for which Java was designed requires devel opers to be aware of the different platforms, and be able
to make sure applications take advantage of the facilitiesin the language that make it possible to port.

155

Chapter 9. Software Testing

Objectives

At the end of this chapter you have gained an understanding of:
» What software bugs are.
» Who tests the software.

» How to write testable software.

Various testing strategies, including unit testing and regression testing.

» Debugging.

Introduction to software testing

Software never runs as we want it to: creating software is an attempt at formally specifying (using
a programming language) a solution to a problem. Assuming that it implements the correct solution
(as defined by the by the various requirements and design documentation), it very often implements
this solution incorrectly. Even if it does implement the solution correctly, the solution may itself not
be what the customer wants, or may have unforeseen consequences in the software's behaviour. In al
of these situations the software may produce unexpected and unintended behaviour. The error which
causes this unexpected and unintended behaviour is called a softwar e bug.

Testing isthe planned process of running software with theintent of discovering errorsin the software.
It is important to realise that testing is a purposeful process, and is not the accidental discovery of
software bugs.

Discovering errors in the software implementation itself is an important aspect to software testing,
but it is not the only aspect. Testing can aso be used to discover how well the software conforms
to the software requirements, including performance requirements, usability requirements, and so
on. Understanding how to test software in a methodical manner is a fundamental skill required in
engineering software of acceptable quality.

This chapter considers various aspects of software testing.

The testers

Many different peopleinvolved with the development of aparticular piece of software can beinvolved
initstesting, such asthe devel opers, ateam of independent testers, and even the customer sthemsel ves.

The developers

Testing will always begin with the developers. As they develop individual modules of the software
they will need to determine that what they have devel oped conformswith the requirements, and that it
functions as expected. Further, the developerswill haveto test that these modules till function without
error when they have been integrated with each other.

However, the devel opers will often test the software far more gently than is needed for proper testing,
since the devel opers may already have pre-conceived expectations concerning how the software they
have written behaves. Even worse, the developers may even have a vested interest in showing that

156

Software Testing

the work they have done performs correctly and meets the requirements; this works directly against
the process of software testing.

An independent testing team

After the developer has produced working code, the code may be passed to an independent testing
team. This is a group of developers who are not responsible for the original development of the
software. This group's sole responsibility isto test the software that they have been given.

Independent testing teams are one solution to the problems that arise from having the origina
programmers also test all aspects of the software. Since the testing team did not devel op the software,
they will hopefully have lessinterest in reporting that the software functions better than it does. Also,
teams dedi cated to testing software can use more specialised testing frameworks and methodologies
than the devel opersthemselves. The original programmers may not beinterested in testing the usability
of the software, or may not have the resources to examine the performance of the software; the testing
team, however, should have these resources.

The presence of testing teams does not mean that the original developers are not involved with the
testing at all. Thewill till test their code asthey develop it, and will beinvolved with the testing team
as the team examines the software and reports on any errors in the software which they locate. The
developer is usually the person responsible for correcting these errors.

The customer

During iterative and evolutionary development (and agile processesin general), softwareisfrequently
given to the customer for them to examine, report back on, and potentially use.

When the customer is closely involved with the software development, it is possible to have the
customer perform limited testing of the software themselves. This is known as beta testing.

While the customer will not usually be able to test the software as thoroughly as the original software
engineers, they will be able to examine how well the software meetstheir needs, whether the software
requirements have to be changed, and whether there are any obvious bugs which the developers have
missed.

Using betatesting is not a substitute for testing by the devel opers.

Principles of software testing

The completion of software testing

Software testing never completes. It is an ongoing process that begins at the project's inception and
continues until the project is no longer supported. During the software's lifetime the burden of testing
sowly shifts: from the devel opers during design and programming, to independent testing teams, and
finally to the customers. Every action that the customer performs with the software can be considered
atest of the software itself.

Unfortunately, time and money constraints often intervene: it may not be worth the devel oper'stime or
money to fix particular software errors. Thistrade-off between resources spent vs potential benefit can
easily occur for small errors, and for errors which are not often encountered by the software's users.

It is also possible (although difficult) to be statistically rigorous when discussing software errors. For
instance, it is possible to develop a statistical model of the number of expected software failures with
respect to execution time. Error rates over a given period can then be specified given a particular
probability. When that probability islow enough, testing could be considered “complete”.

157

Software Testing

Writing testable software

Animportant aspect of testing isto ensure that the written softwareiswrittenin away that it can easily
be tested. As the software becomes more difficult to test, so the software will be tested | ess often.

There are a number of guidelines that software engineers can follow in order to write software that
can be easily tested. The design principles mentioned in Chapter 7, Design, are a good place to start.
In addition to this, here are some further guidelines:

e Operability: Thisis partly a self-fulfilling quality: the fewer bugs that a software system has, the
easier the software will be to test, since the testing will not progress erratically while time is taken
to repair bugs. Clearly, the more care is taken during software development to produce bug-free
code, the easier the testing that follows will be.

» Observability: Software tests examine the outputs produced by the software for particular inputs.
This means that software is easier to test if the inputs produce distinct, predictable outputs. Further,
it can be helpful to be able to examine the software's internal state, especially where there may be
no predictable outputs, and especially when an error has been discovered.

» Controllability: Asjust mentioned, software testing involves examining outputs for given inputs.
This means that the more easily we can provide inputs to the software, the more easily we can test
the software. This implies that software is more testable when the tester has the ability to easily
control the software in order to provide the test inputs. This controllability applies to the tests as
well: tests should be easily specifiable, automated, and reproducible.

» Decomposability: When software can be decomposed into independent modules, these modules
can be tested individually. When an error occurs in an individual module, the error isless likely to
reguire changes to be made in other modules, or for the tester to even examine multiple modules.

» Simplicity: Clearly, the simpler the software, the fewer errorsit will have, and the easier it will be
to test. There are three forms of simplicity that software can demonstrate: functional simplicity, in
which the software does no more than is needed of it; structural simplicity, in which the software
is decomposed into small, simple units; and code simplicity, in which the coding standards used be
the software team allows for the easy understanding of the code.

 Stability: If changes need to be made to the software, then testing becomes easier if these changes
are always contained within independent modules (via, for instance, decomposability), meaning
that the code that needs to be tested remains small.

» Understandability: Clearly, the more the testers understand the software, the easier it is to test.
Much of thisrelates to good software design, but also to the engineering culture of the devel opers:
communication between designers, devel opers and testers whenever changes occur in the software
is important, as is the ability for the testers and developers to easily access good technical
documentation related to the software (such as APIs for the libraries being used and the software
itself).

Test cases and test case design

Test cases are controlled tests of a particular aspect of the software. The objective of atest caseisto
uncover aparticular error. Testing software, then, isthe development of a suite of such test cases, and
then their application to the software.

Tests should be kept simple, testing for specific errors (or specific classes of errors) rather than testing
whole branches of the software's functionality at atime. Inthisway, if atest failsthe failure will point
to aparticular area of the software that is at fault.

Testing strategies

Just asit isimportant to devel op software in away that eases software testing, it is also important to
both design tests well, and to have a good strategy asto how the software should be tested.

158

Software Testing

Testing isincremental: it begins by testing small, self-contained units and progresses to testing these
units as they interact with each other. Ultimately, the software as a whole — with al unitsintegrated
— istested.

Testing can be broken down into the following stages: unit testing (testing individual modules),
integration testing (testing modules as they are brought together), validation testing (testing to see
if the software meets its requirements), and system testing (testing to see how well the software
integrates with the various systems and processes used by the customer).

Unit testing

Unit testing is concerned with testing the smallest modules of the software. For each module, the
modul€e'sinterface is examined to ensure that information properly flowsto and from the module. The
data structures which are internal to the module should be examined to ensure that they remain in a
consistent state as the module is used. The independent paths (see the section called * Flow graphs,
cyclomatic complexity and white-box testing ” in this chapter) through the module should each be
tested. Boundary conditions should also be closely examined to ensure that they are properly handled
(such as, for example, not reading past the end of an array). Importantly, remember to test the error
handling code and ensure that they handle and report errors correctly.

Unit testscan easily beincorporated into the devel opment processitself: unit tests can be written while
each module is written. Indeed, some software design methods (such as extreme programming, see
Chapter 2, Process and Model) ask for unit teststo be devel oped before the softwareitself. Regression
tests (aform of integration testing), too, can beincorporated into the devel opment process— one way
of doing so is to have them automatically run each night, after all code developed that day has been
submitted to a central repository.

Integration testing

Once unit testing is complete, the next important step is to combine the separate modules and ensure
that they function correctly together. One may think that because each module functions correctly by
itself that they will function correctly together. This is not always the case. For example, module A
might have certain expectations about the behaviour of module B that are not being met, causing A
to function incorrectly.

It may seem that integration testing can be carried out by combining all modules at once and testing
how they function. Unfortunately, this“big bang” approach can makeit difficult to track an error down
to any one particular module. A better approach isto combine modul estogether incrementally, testing
their behaviour at every step. Each increment brings us closer to having the complete software, but
each increment remains constrained enough for usto properly test.

There are two general methods for performing module integration: the top-down and bottom-up
approaches. Top-down integration testing begins by creating the overall software where much of its
functionality is provided by empty stub modules. These modules perform no function other than to
allow the softwareto compile, and to provide away to exercisethe moduleswhich are being tested. The
stubs are then replaced with the actual modules, one at atime, beginning with the modules involved
with user-interaction and ending with the modules which perform the software'sfunctionality. Aseach
modul e passes its tests, a new moduleis integrated.

Clearly, top-downintegrationisdifficult because of the need to create stub modules. The proper testing
of some modules may rely upon a wide range of behaviour from the sub-modules, and so either the
testing must be delayed until the stubs have been replaced, or the stubs must offer much functionality
themselves (and may themselves be buggy).

The aternative to the top-down approach is bottom-up integration testing: here, modules which
do not rely on other modules are combined together to create the software. Because we begin with
modules that do not rely on other modules, no stub code is needed at all. At each step we test the
combined software. When all tests have passed we add another module together. Ultimately, all the
modules will be combined into the functioning software.

159

Software Testing

Whether a top-down approach, a bottom-up approach, or a mixture of both approaches, is used,
whenever anew moduleis added to the softwarein order to be tested, the whole software has changed.
Modules which rely on the new modules may behave differently, and so once again allthe modules
have to be tested. Regression testing is the testing of the previously tested modules when a new
module is added. Regression testing should occur at every incremental step of the integration testing
process.

Validation testing

Unit and integration testing asks the question, “ Are we devel oping the software correctly?’ Validation
testing, on the other hand, asks, “ Are we developing the correct software?’ In other words, validation
testing is concerned with whether the software meets its requirements.

Validation testing focuses on the user-visible portions of the software, such as the user-visible inputs
and outputs, and the software's actions. The tests examine these user-visible portions to ensure that
they meet the software requirements. While not part of the software itself, the documentation should
also be examined to ensure that they meet any requirements concerning them.

We have previously mentioned beta testing as the process of the customers themselves testing the
software. Thiscan beauseful tool inthe validation testing process, since the devel opers cannot foresee
exactly how the customers may use the software.

System testing

Software is always employed within some larger context, such asal the systems and processes which
a business customer may have in place. System testing is concerned with how the software behaves
asit integrates into the broader system in which it will be used.

For example, when the software fails or suffers from an error it must not cause the whole system that
isusing it tofail. Recovery testing examines how the software behaveswhen it fails. Security testing
examines how well the software protects sensitive information and functionality from unauthorised
access. Stress testing examines how the software functions under an abnormal 1oad. While software
may perform well by itself, its behaviour can be quite different when its used in a larger setting;
perfor mancetesting examinesthe software's performance within the context of the system asawhole.

Testing advice

While the previous sections have mostly given advice and guidelines on designing the overall testing
strategy, in this section we discuss more concrete advice on creating individual tests, with afocuson
testing for implementation bugs (i.e., unit and integration testing) rather than validation and system
testing.

Aninitial distinction to be made when creating a test is the difference between white-box and black-
box testing. Black-box testing treats the module as an object whose inner-workings are unknowabl e,
except for how the module handles its inputs and outputs. Black-box testing does not examine the
modul€'sinner state, and assumes that if the module correctly handlesits inputs and outputs, thenitis
error free. White-box testing, on the other hand, also examines the module'sinner state in an attempt
to ensure that its internal operations are correctly performed, no matter how the module handles its
inputs and outputs.

White-box testing allows us to conceivably test every line of code in the module: since we are
examining the software's internal state, we can determine where and how that state changes, and so
construct tests to exercise not only every line of code, but every logical choice that can be made
when executing the code. This process of testing all lines of code and all logical choicesin a software
module is called exhaustive testing, and it is extremely important to realise that, except in the most
trivial of cases, exhaustive testing isimpractical to perform. To see this, one need only consider that
whenever the software contains, for example, if statementswithin if statements, or loops within loops,

160

Software Testing

thenumber of logical pathsthrough the software increases exponentially, and so doesthetimerequired
to test each of these choices. Even software of only afew hundred lines of code can quickly require
more time than is feasible to test every logical decision that could possibly be made by the software.
How this exponential explosion of choiceisto be handled isan important aspect of white-box testing.

Flow graphs, cyclomatic complexity and white-box
testing

It will be useful to introduce some simple graphical notation for representing the execution flow of a
program. While testing can (and often is) discussed without mention of flow graphs, they do provide
agraphical tool for better describing the various testing processes.

Figure 9.1, “Flow graph notation”, displays various examples from the notation. The nodes in the
graph represent some unit of processing that must occur. All logical decisions which affect the flow
of program execution are represented by the edges in a graph: when an if statement decides on which
branch to take (its then or else branches), this is represented by multiple edges leading to separate
nodes. Similarly, various loops, case statements, and so on, are represented in a similar way.

An independent path through a program is a path through a flow graph which covers at least one
edge that no other path covers. Examine Figure 9.2, “An example flow-graph”. The paths 1,2,3,5,7,8
and 1,2,3,5,7,5,7,5,7,8 are not independent, because neither of them have an edge which the other does
not. However, the paths 1,2,3,5,7,8 and 1,2,4,6,8 are independent.

The set of all independent paths through a flow graph make up the basis set for the flow graph. If our
testing can execute every path in the basis set, then we know that we have executed every statement
in the program at least once, and that we have tested every condition as well.

Note

While we may have tested every line of code, and every condition, we have still not
tested every possible combination of logical choices that could be made by the conditional
statements during software execution. In this way we limit the explosion of test cases the
exhaustive testing would produce. However, this does mean that some bugs may still escape
detection.

The cyclomatic complexity of aflow graph informs us how many paths there arein the graph's basis
set (in other words, how many independent paths there are needing to be tested). There are three ways
in which it can be computed:

* By counting the number of regionsin the flow graph.

 If E is the number of edges in the flow graph, and N the number of nodes, then the cyclomatic
complexity is: E- N+ 2.

» The cyclomatic complexity isalso P + 1, where P is the number of nodes from which two or more
edges exit. These are the nodes at which logical decisions controlling program flow are made.

In Figure 9.2, “ An example flow-graph”, we can cal cul ate the complexity in all three ways. There are
four regionsin the graph (remember to count the space surrounding the graph, and not only the spaces
inside the graph). There are ten edges and eight nodes. There are three nodes from which two or more
edges leave. Using the three methods above, we get:

* Four regions give a cyclomatic complexity of 4.

» Ten edges and eight nodes give a cyclomatic complexity of 10-8+2=4

» Three nodes with two or more exiting edges gives a cyclomatic complexity of 3+ 1=4

161

Software Testing

Figure9.1. Flow graph notation

~Q—~Q
A sequence flow graph
Q
TN
Soge
Q

Anif statement flow graph

A case statement flow graph

~5-0O-0

An until statement flow graph

162

Software Testing

Figure9.2. An example flow-graph

7

o8
/©\
X Q@
1 >
Q

N

\
O,

An example flow graph, with labeled nodes. Execution begins at node 1, and proceeds
through an if statement, and possibly through aloop. Execution terminates at node 8.

As we can see, each method agrees with each other, and states that there are four independent paths
through the program.

The third definition has broad applicability, since it provides a method for calculating complexity
without using flow graphs: one can merely count the number of conditional statementsin a program
and add one to this number.

These concepts of independent paths, basis sets and cyclomatic complexity are important to testing,
because they give us a concept of how well our tests may be exercising the code. Importantly, those
portions of the code which are used least are the portionswhich aretheleast likely to be tested, and the
most likely to retain their errors. Discovering the independent paths through a program, and testing
them all, allows us to ensure that these errors do not go unchecked. Various studies have also shown
that the higher the cyclomatic complexity of a given package, the more likely it isto have errors.

We want to again point out that testing all independent paths is not the same as exhaustive testing.
Exhaustivetesting wishesto test all possible pathsthrough the flow graph, asdetermined by examining
all possible combinationsof logical choicesthat could occur at the conditions. Inthe particular example
used here, the number of all paths through the program depends on the number of times that the loop
needs to iterate. If the loop were to contain other loops, or if statements, this number of paths would
increase dramatically. The use of independent paths keeps the number of tests to a reasonable level,
while ensuring that all lines of code are tested.

The testing methodol ogy which tests al independent paths through an application is called basis path
testing, and is clearly awhite-box testing method.

Basis path testing can be tedious to perform. It does provide suggestions for determining tests in
general, however. When determining how to test code, awaystest thelogical conditions (thisiscalled
condition testing). Also, focus on the conditions and validity of loop constructs (loop testing).

163

Software Testing

Black-box testing

While white-box testing is interested in how the module performs its function, black-box testing is
interested only in what the module should be doing. Black-box testing tests the requirements of the
software module, and not at all with how it manages to meet these requirements.

These requirements cover awide range of areas to be tested, and includes:

* Input and output errors, which includes not only errors which may occur when making use of the
software module, but also errors that may occur when the software module attempts to use other
modules, such as a database.

* Incorrect and missing functions.

* Initiaisation and termination errors.
» Behaviour errors.

» Performance errors.

» Reliability errors.

We will examine two methods of black-box testing: equivalence partitioning and boundary value
analysis.

Equivalence partitioning

Equivalence partitioning divides a software modul€e's input data into equivalence classes (note that
these are not classes in the sense of object-oriented programming). The test cases are then designed
S0 as to test each one of these input classes; a good test case will potentially discover errorsin whole
classes of input data.

Generally, for any input, we will have at least two classes. For example, if the input to the software
is a Boolean, then this is clearly the case (in this case, each class has one value: one true, the other
false). Similarly, if theinput isamember of aset, then you will have multiple classes. For example, if
we had a software module from a graphics package which, when given a rectangle, used the lengths
of its sides to determine whether the rectangle was a square or not, then we would have two classes:
one for the rectangles which are square, one for rectangles which are not.

The number of classes strongly depends on the type of the input data. If the input data requires a
specific number, then there are three classes: one for that number, one for all numbers less than it,
and one for all numbers greater than it. Similarly, if the input should be from arange of numbers, we
again have three classes.

Testing each input class reveals whether the software module correctly handles the range of input that
it could receive.

Boundary value analysis

Software bugstend to occur more frequently at their “ boundary values’, which are those values around
which a conditional changesthe value it evaluates to. For instance, boundary values are those values
for which an if statement will change between choosing to execute its then or else portions, or where
aloop decides whether to iterate or not.

Thisincreasein errors can occur for simplereasons, such as using agreater-than comparison instead of
a greater-than-or-equal-to comparison. When looping, common boundary mistakes include iterating
one time too many, or one time too few.

Because of theincreased frequency with which errors occur around boundary values, it isimportant to
designtest casesthat properly exercisethe boundaries of each conditional statement. These boundaries

164

Software Testing

will occur between the various input classes in the equival ence partitioning method, and so boundary
value analysisis well suited to being combined with that method.

Object-oriented testing

Testing methodol ogies can be modified slightly when the softwareis developed in an object-oriented
manner.

The basic “unit” for unit testing becomes the class as a whole. This does have the consegquence,
however, that the various methods cannot be tested in isolation, but must be tested together. At the
very least the class's constructor and destructor will always be tested with any given method.

Similarly, when performing integration testing, the class becomes the basic module which makes
up the software. Use-based is a bottom-up integration method constructing the software from those
classes which use no other, then integrating these with the classes which use them in turn, and so
on. Classes can aso be integrated by following program execution, integrating those classes that are
required in order to respond to particular input (thr ead-based testing), or, similarly, to integrate those
classes which provide some specific functionality, independent of the input to the software (cluster
testing).

In general, you should not only test base-classes, but all derived classesaswell. Inheritanceisaspecial
case of module integration, and should be treated as such.

Debugging

Once atest case has been executed and a bug located, debugging begins. Debugging is the process of
locating the cause of a software error and correcting it. Unfortunately, thisis not necessarily an easy
process. Software engineers are only ever presented with the software's behaviour, and they do not
directly see the error's cause. Debugging, then, relies on the software engineer to determine from the
software'sincorrect behaviour the causes of this behaviour.

Debugging begins with the software failing atest case. The software engineer debugging the software
will then hypothesi se a possible cause and implement the needed changesto correct thisin the software.
The failed test is then rerun. Further test cases may also be written to help narrow down the actual
cause. Thisall occursiteratively, with each step hopefully providing moreinformation to the devel oper
as to the root cause of the error.

A number of debugging tactics have been proposed. They can be used alone, although they become
far more effective when used in combination with each other.

Brute force debugging

This is conceptually the simplest of the methods, and often the least successful. This involves the
developer manually searching through stack-traces, memory-dumps, log files, and so on, for traces of
the error. Extra output statements, in addition to break points, are often added to the code in order to
examine what the software isdoing at every step.

Backtracking

This method has the devel oper begin with the code that immediately produces the observable error.
The developer than backtracks through the execution path, looking for the cause. Unfortunately, the
number of execution paths which lead to any given point in the software can become quite large the
further the cause of the bug isfrom wherethe error occurs, and so this method can becomeimpractical .

Cause elimination

In thismethod, the devel oper devel ops hypotheses asto why the bug has occurred. The code can either
be directly examined for the bug, or data to test the hypothesis can be constructed. This method can

165

Software Testing

often result in the shortest debug times, although it does rely on the developers understanding the
software well.

Bisect

Bisect is a useful method for locating bugs which are new to the software. Previous versions of the
software are examined until aversion which does not havethe error islocated. The difference between
that version's source code and the next is then examined to find the bug.

Review

Questions

Review Question 1

Complete:

Testing isthe [| process of running software in with the intent of [] inthe
software. It is important to realise that testing isa| | process, and is not the accidental
discovery of software bugs.

A discussion of this question can be found at the end of this chapter.

Review Question 2

Who are the different parties involved in software testing, and how does the testing shift from one
party to another?

A discussion of this question can be found at the end of this chapter.

Review Question 3
What guidelines would you give for devel oping software that is easily testable?

A discussion of this question can be found at the end of this chapter.

Review Question 4

Complete:
Test cases are controlled tests of |] of the software. The objective of atest case
is[. Testing software, then, isthe development of |], and then

their application to the software.

A discussion of this question can be found at the end of this chapter.
Review Question 5

What are the different stages of software testing?

A discussion of this question can be found at the end of this chapter.
Review Question 6

What is the difference between white-box and black-box testing?

A discussion of this question can be found at the end of this chapter.

166

Software Testing

Review Question 7

Why is it not practically possible to test every logical path through a piece of software? What
alternatives are there?

A discussion of this question can be found at the end of this chapter.

Review Question 8

Debugging begins with the software [atest case. The software engineer debugging the
software will then [| a possible cause and [] in the software.
Thefailed test isthen rerun. This might not always provide an exact reason for the bug, and so further
test cases may also be written to []. Thisall occursiteratively, with each
step hopefully providing more information to the developer asto the root cause of the error.

A discussion of this question can be found at the end of this chapter.

Review Question 9
What are some common debugging techniques?

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

Testing is the planned process of running software in with the intent of discovering errorsin the
software. It is important to realise that testing is a purposeful process, and is not the accidental
discovery of software bugs.

Discussion of Review Question 2
There are three parties involved in software testing:
1. The developers
2. Independent testers
3. Thecustomers/ users

Testing originally begins with the developers, who need to ensure that the software they have coded
works as they intend. Testing is then taken over by independent testers, who are able to use more
specialised testing frameworks than the developers themselves. They can aso perform user-based
testing, which most developers would not be able to do.

Finally, as the software is delivered to the customer and the software begins to be used, its users
become the final group of testers.

Discussion of Review Question 3

» Operability. New code developed for relatively bug-free software will have fewer bugs than code
developed for relatively buggy software.

» Observability. Software whoseinternal state can easily be examined, and that produceswell defined
outputs for particular inputs, is easier to test.

» Controllability. If the tester has the ability to easily control the software, testing becomes easier:
controllability allows for the easier inputting of data and examining of output.

167

Software Testing

» Decomposability. Independent modules can more easily be tested, and changes made to a module
are lesslikely to affect other modules.

» Smplicity. The ssimpler the software, the fewer errorsit will have.
» Sability. Testing is easier if changes made to correct bugs are limited to independent modules.

» Understandability. The better the testers understand the software — through good software design,
documentation, and so on — the better they can test the software.

Discussion of Review Question 4
Test cases are controlled tests of particular aspects of the software. The objective of atest caseis

uncover a particular error. Testing software, then, isthe development of a collection of test cases,
and then their application to the software.

Discussion of Review Question 5

* Unit testing, which tests the smallest modules of the software.

Integration testing, which tests the software as the modules are brought together.

Validation testing, which tests the software to ensure that it meets its requirements specification.

» System testing, which examines how well the software integrates with the various systems and
processes used by the customer.

Discussion of Review Question 6

Black-box testing tests the modul e as an object whose inner-workings are unknowabl e, except for how
it handles its inputs and outputs. Black-box testing therefor does not examine a modul€e's inner state,
only the interfaces to the module. It assumes that if it handles its inputs and outputs correctly, then
the module itself behaves correctly.

White-box testing examines the software's internal state; it does not assume that because a module
has handles its inputs and outputs correctly that the module has behaved correctly. For example, after
correctly outputting some data, a module may leave its internal state with invalid values, and so any
further action will fail.

Discussion of Review Question 7

The number of possible logical paths through a piece of software can grow exponentialy as if
statements and loops are added. This would make the amount of time required to test alarge software
package prohibitive.

An alternativetesting strategy isto determinethe software's cyclomatic complexity, which tellsushow
many independent paths there are through the software. Each of these independent paths can then be
tested; thiswill provide good code coverage (it will execute every line of code) without exhaustively
testing every logical path through the software, and so greatly reduces the amount of time needed to
execute the software.

Discussion of Review Question 8

Debugging beginswith the software failing atest case. The software engineer debugging the software
will then hypothesise a possible cause and implement the needed changesin the software. Thefailed
test isthen rerun. This might not always provide an exact reason for the bug, and so further test cases
may also be written to narrow down the cause. This al occurs iteratively, with each step hopefully
providing more information to the devel oper as to the root cause of the error.

168

Software Testing

Discussion of Review Question 9

Brute for ce debugging; the devel oper searches through stack-traces, memory-dumps, log files, and
other data generated by the program to locate the error.

Backtracking; the devel oper examines the code that immediately produces the observable bug, and
then moves backwards through the execution path until the cause of the bug has been found.

Cause elimination; the developer hypothesises reasons why the bug has occurred, and then either
directly examines the code to see if these reasons exist, or produces further tests to narrow down
the choice between various hypotheses.

Bisect; the devel oper examinespreviousversions of the software until onewithout the bug islocated.
The difference between that version of the source code and the next (in which the bug does not
exist) iswhere the bug will be located.

169

